福田のおもしろ数学478〜不等式の証明 - 質問解決D.B.(データベース)

福田のおもしろ数学478〜不等式の証明

問題文全文(内容文):

$a,b,c$を正の数とする。

$a^2+b^2+c^2=3$のとき

$\dfrac{1}{1+2ab}+\dfrac{1}{1+2bc}+\dfrac{1}{1+2ca} \geqq 1$

を証明して下さい。
    
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$a,b,c$を正の数とする。

$a^2+b^2+c^2=3$のとき

$\dfrac{1}{1+2ab}+\dfrac{1}{1+2bc}+\dfrac{1}{1+2ca} \geqq 1$

を証明して下さい。
    
投稿日:2025.04.24

<関連動画>

分数式

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x\neq 0$であり,$x$は実数であるとする.
$\dfrac{x}{x^2+x+1}=a$
$\dfrac{x^2}{x^4+x^2+1}$の値を$a$で表せ.
この動画を見る 

16次式が正である証明

アイキャッチ画像
単元: #数Ⅱ#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
xが実数なら
$x^{16}-x+1>0$であることを示せ
この動画を見る 

気持ちいい別解あり!これ解ける?【京都大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$a,b,c$を正の数とするとき、不等式
$2\left( -\frac{a+b}{2}-\sqrt{ab}\right)≦3\left(\frac{a+b+c}{2}-\sqrt[3]{abc}\right)$
を証明せよ。

また、等号が成立するのはどんな場合か。

京都大過去問
この動画を見る 

明治大 多項定理 場合の数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#式と証明#場合の数#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
明治大学過去問題
同類項は何種類か
$(x+y+z)^{88}$
この動画を見る 

【数Ⅱ】【式と証明】等式の証明1 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$a+b+c=0$のとき、
次の等式が成り立つことを証明せよ。
$a(\dfrac1b+\dfrac1c)+b(\dfrac1c+\dfrac1a)+c(\dfrac1a+\dfrac1b)=-3$
この動画を見る 
PAGE TOP