福田のおもしろ数学573〜4次方程式の解と係数の関係 - 質問解決D.B.(データベース)

福田のおもしろ数学573〜4次方程式の解と係数の関係

問題文全文(内容文):

$a,b,c,d$は実数であり$4$次方程式

$x^4+ax^3+bx^2+cx+d=0$

のすべての解が正の実数であるとき

$(b-a-c)^2 \geqq kd$

が常に成り立つ最大の$k$を求めよ。

また等号が成り立つのはどんなときか?
     
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$a,b,c,d$は実数であり$4$次方程式

$x^4+ax^3+bx^2+cx+d=0$

のすべての解が正の実数であるとき

$(b-a-c)^2 \geqq kd$

が常に成り立つ最大の$k$を求めよ。

また等号が成り立つのはどんなときか?
     
投稿日:2025.07.28

<関連動画>

【高校数学】数Ⅲ-6 複素数の極形式②

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の複素数を極形式で表そう.
ただし,偏角$\theta$は$0\leqq \theta \lt 2\pi$とする.

①$1-i$
②$-\sqrt3+i$
③$3+\sqrt3 i$
④$\dfrac{-5+i}{2-3i}$
この動画を見る 

ハルハル様の作成問題③ #複素数

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数平面#複素数#複素数平面#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
$z$:複素数
$a$:実数
$2Z^2+3|Z|Z=a$を解け
この動画を見る 

京都大 三角関数 4次方程式 高校数学 大学受験 Japanese university entrance exam questions Kyoto University

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#複素数と方程式#三角関数#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2014京都大学過去問題
$0 \leqq θ < 90^\circ \quad$xについての4次方程式
$\{ x^2-2(cosθ)x-cosθ+1 \} x$
$\{ x^2-2(tanθ)x+3 \} = 0$は虚数解を少なくとも1つ持つことを示せ。
この動画を見る 

虚数係数二次方程式

アイキャッチ画像
単元: #複素数と方程式
指導講師: 鈴木貫太郎
問題文全文(内容文):
$z^2+\frac{1+(2-\sqrt{3})i}{2}z+\frac{\sqrt{3}+i}{2}=0$を解け
*この方程式の2解を解にもつ実数係数の4次方程式を作れ
この動画を見る 

連立二元4次方程式

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#2次関数#複素数と方程式#2次方程式と2次不等式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$\begin{eqnarray}
\left\{
\begin{array}{l}
x+y=2 \\
x^4+y^4=1234
\end{array}
\right.
\end{eqnarray}$
この動画を見る 
PAGE TOP