【高校数学】 数Ⅱ-89 一般角の三角関数 - 質問解決D.B.(データベース)

【高校数学】 数Ⅱ-89 一般角の三角関数

問題文全文(内容文):
座標平面上で、x軸の正の部分を始線にとり、 一般角$\theta$の動径と、原点を中心とする半径$r$の円との交点Pの座標を(x,y)とすると、

$\sin \theta=$①____

$\cos \theta=$②____

$\tan \theta=$③____

また、単位円について同様に考えると、

$\sin \theta=$④____

$\cos \theta=$⑤____

ちなみに、三角関数の値の範囲は、

⑥____$\leqq \sin \theta \leqq$____

⑦____$\leqq \cos \theta \leqq$____

$\tan \theta=$恥数全体。
※図は動画内参照
単元: #数Ⅱ#三角関数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
座標平面上で、x軸の正の部分を始線にとり、 一般角$\theta$の動径と、原点を中心とする半径$r$の円との交点Pの座標を(x,y)とすると、

$\sin \theta=$①____

$\cos \theta=$②____

$\tan \theta=$③____

また、単位円について同様に考えると、

$\sin \theta=$④____

$\cos \theta=$⑤____

ちなみに、三角関数の値の範囲は、

⑥____$\leqq \sin \theta \leqq$____

⑦____$\leqq \cos \theta \leqq$____

$\tan \theta=$恥数全体。
※図は動画内参照
投稿日:2015.07.28

<関連動画>

法政大 複素数の方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$8z^3=i$

2020法政(情報科)
この動画を見る 

福田の一夜漬け数学〜数学II 図形と方程式〜軌跡(9) 対称式の問題(その1)、高校2年生

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 実数$x,y$が$x^2+y^2 \leqq 8$ を満たしながら変化するとき
(1)点$P(x+y,xy)$の存在範囲を図示せよ。
(2)$x+y+xy$の最大値、最小値を求めよ。
この動画を見る 

大学入試問題#896「難関大学ではたまにでる?」 #北海道大学(2024)

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: ますただ
問題文全文(内容文):
関数$f_1(x),f_2(x),f_3(x),…$を次の関係式で定める。
$f_1(x)=3x$
$f_{n+1}(x)=(n+2)x^{n+1}+(\displaystyle \int_{0}^{1} f_n(t) dt)x$
関数$f_n(x)$を$x$と$n$の式で表せ。$(n=1,2,3,…)$

出典:2024年北海道大学
この動画を見る 

【数Ⅱ】複素数の計算【簡単なようで間違えやすい計算】

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
$ iと等しいものを2つ選べ.
\dfrac{1}{i^3},\sqrt{-\dfrac{1}{2}}\sqrt{-2}i,\dfrac{1}{\sqrt{-1}},\dfrac{-3+2i}{2+3i}$
この動画を見る 

大学入試問題#914「コメントむずい」 #学習院大学2023 #積分方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#学習院大学
指導講師: ますただ
問題文全文(内容文):
$f(0)=0$
$f'(x)+\displaystyle \int_{0}^{1} f(t) dt=2e^{2x}-e^x$
を満たす関数$f(x)$を求めよ。

出典:2023年学習院大学
この動画を見る 
PAGE TOP