3乗の方程式 - 質問解決D.B.(データベース)

3乗の方程式

問題文全文(内容文):
$x^3-333^3 = 444^3 + 555^3$
(xは実数)
x=?

単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$x^3-333^3 = 444^3 + 555^3$
(xは実数)
x=?

投稿日:2022.10.02

<関連動画>

南山大 指数方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#南山大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$4^x+a・2^{x+1}+b=0$が異なる2つ負の解をもつための$a,b$の満たすべき条件を図示せよ

出典:南山大学 過去問
この動画を見る 

福田の数学〜北海道大学2023年文系第1問〜関数方程式と剰余定理因数定理

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#複素数と方程式#恒等式・等式・不等式の証明#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ P(x)をxについての整式とし、P(x)P(-x)=P($x^2$)はxについての恒等式であるとする。
(1)P(0)=0またはP(0)=1 であることを示せ。
(2)P(x)がx-1で割り切れないならば、P(x)-1はx+1で割り切れることを示せ。
(3)次数が2であるP(x)を全て求めよ。

2023北海道大学文系過去問
この動画を見る 

指数方程式 解はアレだけじゃないよ

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$5^x・16^{\frac{x-1}{x}}=100$
この動画を見る 

いい問題(多分)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
a+bcd=10 \\
b+cda=10\\
c+dab=10 \\
d+abc=10 \\
\end{array}
\right.
\end{eqnarray}$

$(a,b,c,d)$の組を求めよ.
この動画を見る 

昭和(医) 華麗な解法

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^3-3x^2+1=0$の3つの解を$\alpha,\beta,\delta$とする.
$\alpha^2,\beta^2,\delta^2$を解にもつ3次方程式を求めよ.
3次の係数は1である.

昭和大(医)過去問
この動画を見る 
PAGE TOP