東工大 積分 放物線と直線 面積最小値 高校数学 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

東工大 積分 放物線と直線 面積最小値 高校数学 Mathematics Japanese university entrance exam

問題文全文(内容文):
$y=-2x^2+x+1$上の1点における接線と$y=x^2$とによって囲まれる部分の面積の最小値を求めよ。

出典:1967年 東京工業大学 過去問
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#微分法と積分法#点と直線#学校別大学入試過去問解説(数学)#不定積分・定積分#東京工業大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$y=-2x^2+x+1$上の1点における接線と$y=x^2$とによって囲まれる部分の面積の最小値を求めよ。

出典:1967年 東京工業大学 過去問
投稿日:2019.01.20

<関連動画>

2点を通る直線の方程式を求めるのに連立方程式を使うのは卒業しましょう

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2点を通る直線の方程式を求めるのに連立方程式を使うのは卒業しましょう。
この動画を見る 

福田の一夜漬け数学〜図形と方程式〜直線の方程式(3)直線群の基本、高校2年生

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $(3+2k)x$$+(4-k)y+5$$-3k=0$ は定数$k$の値にかかわら定点を通る。
この定点の座標を求めよ。

${\Large\boxed{2}}$ $2$直線$\ 2x-3y+5=0$ $\cdots$① $x+2y-6=0$ $\cdots$②の交点を通る直線
のうち次の条件を満たす直線の方程式を求めよ。
(1)点(-1,2)を通る
(2)直線$\ x+3y+7=0$ $\cdots$③と平行
(3)直線$\ 2x-y+7=0$ $\cdots$④と垂直
この動画を見る 

放物線と直線

アイキャッチ画像
単元: #数学(中学生)#数Ⅱ#図形と方程式#点と直線#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{a}{b}=?$
*図は動画内参照

ラ・サール高等学校
この動画を見る 

点と直線の距離の公式を2分で覚える動画【数学】

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学】点と直線の距離の公式についての動画です
この動画を見る 

福田の数学〜双曲線と直線の位置関係を考えよう〜明治大学2023年全学部統一Ⅲ第3問〜双曲線と直線

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#点と直線#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{3}}$ 座標平面上の双曲線$x^2$-$4y^2$=5を$C$とおき、点(1,0)を通り傾き$m$が正となる直線を$l$とおく。$C$の漸近線は$y$=$\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}x$と$y$=$-\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}x$である。また、$l$と$C$の共有点がただ1つとなるのは、$m$が$\frac{\sqrt{\boxed{\ \ ウ\ \ }}}{\boxed{\ \ エ\ \ }}$または$\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ カ\ \ }}$ のときである。
$m$=$\frac{\sqrt{\boxed{\ \ ウ\ \ }}}{\boxed{\ \ エ\ \ }}$ならば$l$は$C$の接線となる。ここで$a$=$\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ カ\ \ }}$ とおく。$m$<$a$であるときに、$l$と$C$の共有点の$y$座標のうち最大のものを$y_m$とすれば、
$y_m$=$\displaystyle\frac{m}{\boxed{\ \ キ\ \ }-\boxed{\ \ ク\ \ }m^2}\left(-\boxed{\ \ ケ\ \ }+\sqrt{\boxed{\ \ コ\ \ }-\boxed{\ \ サシ\ \ }m^2}\right)$
となる。このとき、$\displaystyle\lim_{m \to a-0}y_m$=$\boxed{\ \ ス\ \ }$ が成り立つ。
この動画を見る 
PAGE TOP