福田の一夜漬け数学〜数学III 複素数平面〜三角形の形状(1) - 質問解決D.B.(データベース)

福田の一夜漬け数学〜数学III 複素数平面〜三角形の形状(1)

問題文全文(内容文):
${\Large\boxed{1}}$ 異なる3点$O(0),A(\alpha),B(\beta)$が
$\alpha^2-2\alpha\beta+4\beta^2=0$を満たすとき、
$\triangle OAB$はどのような三角形か。

${\Large\boxed{2}}$ $\alpha=2i,$ $\beta=-\sqrt3+7i,$ $\gamma=\sqrt3+4i$ を表す点を
それぞれ$A,B,C$とするとき、$\triangle ABC$の形状を述べよ。
単元: #複素数平面#図形への応用#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 異なる3点$O(0),A(\alpha),B(\beta)$が
$\alpha^2-2\alpha\beta+4\beta^2=0$を満たすとき、
$\triangle OAB$はどのような三角形か。

${\Large\boxed{2}}$ $\alpha=2i,$ $\beta=-\sqrt3+7i,$ $\gamma=\sqrt3+4i$ を表す点を
それぞれ$A,B,C$とするとき、$\triangle ABC$の形状を述べよ。
投稿日:2018.05.30

<関連動画>

福田の数学〜東京慈恵会医科大学2022年医学部第4問〜複素数平面と図形

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#平面上の曲線#複素数平面#方べきの定理と2つの円の関係#図形と方程式#点と直線#2次曲線#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#数C#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}}\ 複素数平面上の点zが原点を中心とする半径1の円周上を動くとき、w=z+\frac{2}{z}\\
で表される点wの描く図形をCとする。Cで囲まれた部分の内部(ただし、\\
境界線は含まない)に定点\alphaをとり、\alphaを通る直線lがCと交わる2点を\beta_1,\beta_2とする。\\
このとき、次の問いに答えよ。ただしiは虚数単位とする。\\
(1)w=u+vi(u,vは実数)とするとき、uとvの間に成り立つ関係式を求めよ。\\
(2)点\alphaを固定したままlを動かすとき、積|\beta_1-\alpha|・|\beta_2-\alpha|が最大となる\\
ようなlはどのような直線のときか調べよ。
\end{eqnarray}

2022東京慈恵会医科大学医学部過去問
この動画を見る 

複素数平面の基本⑬3点が一直線上にあるとき、なす角が垂直のときを考える

アイキャッチ画像
単元: #複素数平面#図形への応用#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
3点が一直線上にある条件、2直線が垂直に交わるときの条件
この動画を見る 

福田の数学〜大阪大学2022年理系第1問〜複素数平面上の点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数平面#図形と方程式#軌跡と領域#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
rを正の実数とする。
複素数平面上で点Zが点3/2を中心とする半径rの円周上を動くとき、
Z+w=Zw
を満たす点wが描く図形を求めよ。

2022大阪大学理系過去問
この動画を見る 

福田の一夜漬け数学〜数学III 複素数平面〜|z|, arg zの範囲

アイキャッチ画像
単元: #複素数平面#図形への応用#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} 点zが、|z+3-\sqrt3i|=\sqrt2|z+2-\sqrt3i| を満たしながら動く。\\
このとき、|z|の値の範囲とzの偏角\thetaの範囲を求めよ。\\
ただし、0 \leqq \theta \lt 2\pi とする。
\end{eqnarray}
この動画を見る 

福田の一夜漬け数学〜数学III 複素数平面〜点の軌跡(2)

アイキャッチ画像
単元: #数Ⅱ#複素数平面#図形と方程式#軌跡と領域#複素数平面#図形への応用#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 点$z$が原点中心、半径1の円周上を動くとき、次の条件を満たす
点$w$はどのような図形を描くか。
(1)$w=2iz+1$
(2)$w=\displaystyle \frac{3z-2i}{z-2}$

${\Large\boxed{2}}$ $\displaystyle \frac{z}{z^2+1}$が実数となるように$z$が動くとき、
点$z$はどのような図形を描くか。
この動画を見る 
PAGE TOP