【高校数学】数Ⅲ-111 接線と法線④(媒介変数表示編) - 質問解決D.B.(データベース)

【高校数学】数Ⅲ-111 接線と法線④(媒介変数表示編)

問題文全文(内容文):
次の媒介変数で表された曲線において、
()内に示された曲線上の点における接線の方程式を求めよ。

①$\begin{eqnarray}
\left\{
\begin{array}{l}
x=2\cos\theta \\
y=\sin\theta
\end{array}
\right.
\end{eqnarray}$$\quad \left(\theta=\dfrac{\pi}{3}\right)$

②①$\begin{eqnarray}
\left\{
\begin{array}{l}
x=\cos^3 \theta \\
y=\sin^3 \theta
\end{array}
\right.
\end{eqnarray}$$\quad \left(\theta=\dfrac{\pi}{4}\right)$
単元: #平面上の曲線#微分とその応用#接線と法線・平均値の定理#媒介変数表示と極座標#数学(高校生)#数C#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の媒介変数で表された曲線において、
()内に示された曲線上の点における接線の方程式を求めよ。

①$\begin{eqnarray}
\left\{
\begin{array}{l}
x=2\cos\theta \\
y=\sin\theta
\end{array}
\right.
\end{eqnarray}$$\quad \left(\theta=\dfrac{\pi}{3}\right)$

②①$\begin{eqnarray}
\left\{
\begin{array}{l}
x=\cos^3 \theta \\
y=\sin^3 \theta
\end{array}
\right.
\end{eqnarray}$$\quad \left(\theta=\dfrac{\pi}{4}\right)$
投稿日:2018.07.05

<関連動画>

東大 座標上の鋭角三角形

アイキャッチ画像
単元: #数A#図形の性質#平面上の曲線#三角形の辺の比(内分・外分・二等分線)#媒介変数表示と極座標#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b$は実数であり,$b\neq 0$である.
$O(0,0).P(1,0),Q(a,b)$

(1)$\triangle OPQ$が鋭角三角形になる$a,b$の条件を不等式で表せ.
(2)$m,n$整数,$a,b$は(1)の条件を満たすとき,$(m+na)^2-(m+na)+n^2b^2 \geqq 0$を示せ.

1998東大過去問
この動画を見る 

【数Ⅲ】式と曲線:極方程式の直線のなす角

アイキャッチ画像
単元: #平面上の曲線#媒介変数表示と極座標#数学(高校生)#数C
教材: #サクシード#サクシード数学Ⅲ#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
2直線
$r(\sqrt3\cos\theta+\sin\theta)=4$
$r(\sqrt3\cos\theta-\sin\theta)=2$
の交点の極座標を求めよ。またこの2直線のなす鋭角も求めよ。
(出典 数研出版サクシード数学Ⅲ)
この動画を見る 

【数C】【平面上の曲線】eは正の定数とする。極座標が(3,0)である点Aを通り、OXに垂直な直線をlとする。極Oと直線lからの比がe:1である点Pの極方程式を求めよ。(1)e=1(2)e=1/2

アイキャッチ画像
単元: #平面上の曲線#媒介変数表示と極座標#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#式と曲線
指導講師: 理数個別チャンネル
問題文全文(内容文):
eは正の定数とする。極座標が(3,0)である点Aを通り、始線OXに垂直な直線をlとする。極Oと直線lからの距離の比がe:1である点Pの軌跡を表す極方程式を、次の各場合について求めよ。
(1)e=1
(2)e=1/2
この動画を見る 

福田の数学〜東京大学2025理系第1問〜媒介変数表示で表された曲線の面積と曲線の長さ

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#東京大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{1}$

座標平面上の点

$A(0,0),B(0,1),C(1,1),D(1,0)$を考える。

実数$0\lt t \lt 1$に対して、

線分$AB,BC,CD$を$t:(1-t)$に内分する点を

それぞれ$S_t,T_t$とする。

さらに、線分$S_tT_t$を$t:(1-t)$に内分する点を

$U_t$とする。

また、点$A$を$U_0$、点$D$を$U_1$とする。

(1)点$U_t$の座標を求めよ。

(2)$t$が$0\leqq t\leqq 1$の範囲を動くときに

点$U_t$描く曲線と、

線分$AD$で囲まれた部分の面積を求めよ。

(3)$a$を$0\lt a\lt 1$を満たす実数とする。

$t$が$0\leqq t \leqq a$の範囲を動くときに点$U_t$が

描く曲線の長さを、$a$の多項式の形で求めよ。

図は動画内参照

$2025$年東京大学理系過去問題
この動画を見る 

高専数学 微積I #248(2) 極座標表示曲線の長さ

アイキャッチ画像
単元: #数Ⅱ#平面上の曲線#微分法と積分法#媒介変数表示と極座標#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
$0\leqq \theta \leqq 4\pi$である.
極座標による曲線$r=\sin^4\dfrac{\theta}{4}$
の長さを求めよ.
この動画を見る 
PAGE TOP