東邦大(理)基本問題 - 質問解決D.B.(データベース)

東邦大(理)基本問題

問題文全文(内容文):
2023東邦大学過去問題
p,q整数
α+β =2P
αβ = 4q
$α^n+β^n$は$2^n$で割り切れることを示せ(n=1,2,3,$\cdots$)
単元: #整数の性質
指導講師: 鈴木貫太郎
問題文全文(内容文):
2023東邦大学過去問題
p,q整数
α+β =2P
αβ = 4q
$α^n+β^n$は$2^n$で割り切れることを示せ(n=1,2,3,$\cdots$)
投稿日:2023.09.04

<関連動画>

開成高校 整数問題 最大公約数・最小公倍数

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)#開成高等学校
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b$は自然数$(a \lt b)$
最大公約数を$g(\neq 1)$
最小公倍数を$l$
$a^2+b^2+g^2+l^2=1300$
$a,b$を求めよ

出典:開成高等学校 過去問
この動画を見る 

【数学オリンピックに挑戦】下3桁じゃなく上3桁!?【数学】

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学オリンピック#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
6桁の平方数の上3桁として考えられるものは全部でいくつあるか。

数学オリンピック過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題053〜名古屋大学2017年度文系第3問〜不定方程式の解と条件を満たす約数の個数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{3}}$ 次の問に答えよ。
(1)次の条件(*)を満たす3つの自然数($a$,$b$,$c$)をすべて求めよ。
(*)$a \lt b \lt c$かつ$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2}$である。
(2)偶数$2n(n \geqq 1)$の3つの正の約数$p,q,r$で$p \gt q \gt r$と$p+q+r=n$を満たす組($p,q,r$)の個数を$f(n)$とする。ただし、条件を満たす組が存在しない場合は、
$f(n)=0$とする。$n$が自然数全体を動くときの$f(n)$の最大値$M$を求めよ。
また、$f(n)=M$となる自然数$n$の中で最小のものを求めよ。

2017名古屋大学文系過去問
この動画を見る 

福田のおもしろ数学296〜フェルマーの最終定理とは何か。与えられた不等式を満たす数列の1との大小関係

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
0以上の整数$a, b, c$が$a+b+c=300, a^2b+a^2c+b^2a+b^2c+c^2a+c^2b=6,000,000$を満たしている。そのような$(a, b, c)$の組の個数を求めよ。
この動画を見る 

投稿した動画とほぼ同じ問題が2024年度入試で出たよ!藤田医科大

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#数学(高校生)#藤田医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
x+y+z<10
を満たす自然数x,y,zの組をすべて求めよ.

2024藤田医科大過去問
この動画を見る 
PAGE TOP