【25分で総復習】最初から『数列①』等差数列、等比数列(数学B) - 質問解決D.B.(データベース)

【25分で総復習】最初から『数列①』等差数列、等比数列(数学B)

問題文全文(内容文):
1⃣
初項が-1、公差が2の等差数列について、以下の問いに答えよ。
(1)一般項を求めよ。
(2)第10項を求めよ。
(3)初項から第$n$項までの和を求めよ。

2⃣
等比数列3,-6,12…について、以下の問いに答えよ。
(1)一般項を求めよ。
(2)初項から第$n$項までの和を求めよ。
チャプター:

0:00 オープニング
0:42 数列とは
3:57 等差数列の一般項
6:45 等差数列の和
10:19 問題演習(等差数列)
14:18 等比数列の一般項
16:31 等比数列の和
21:05 問題演習(等比数列)

単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
1⃣
初項が-1、公差が2の等差数列について、以下の問いに答えよ。
(1)一般項を求めよ。
(2)第10項を求めよ。
(3)初項から第$n$項までの和を求めよ。

2⃣
等比数列3,-6,12…について、以下の問いに答えよ。
(1)一般項を求めよ。
(2)初項から第$n$項までの和を求めよ。
投稿日:2021.06.02

<関連動画>

三乗根と漸化式(類)一橋:順天堂(医)

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$は自然数とする.
$\alpha=\sqrt[3]{9+4\sqrt5},\beta=\sqrt[3]{9-4\sqrt5}$
$a_n=\alpha^{2n-1}+\beta^{2n-1}$である.
$a_{n+4}-a_n$が7の倍数であることを示せ.

一橋:順天堂(医)過去問
この動画を見る 

【数B】数列:2以上の自然数に対して、y=x²,y=-x²+2nxで囲まれる部分に含まれる格子点の個数をnの式で表そう。ただし、境界線も含む。

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
2以上の自然数に対して、$y=x^2,y=-x^2+2nx$で囲まれる部分に含まれる格子点の個数をnの式で表そう。ただし、境界線も含む。
この動画を見る 

【数B】【数列】漸化式6 ※問題文は概要欄

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 理数個別チャンネル
問題文全文(内容文):
平面上に$n$個の円があって、それらのどの2つも異なる2点で交わり、
またどの3つも1点で交わらないとする。
これらの$n$個の円が平面を$a_n$個の部分に分けるとき、$\{a_n\}$をnの式で表せ。
この動画を見る 

東大 2次方程式 解と係数 漸化式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#数列#漸化式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^2-4x-1=0$の2つの解を$\alpha, \beta(a \gt \beta),S_{n}=\alpha ^n+\beta ^n$

(1)
$S_{1},S_{2},S_{3}$を求めよ。
$S_{n}$を$S_{n-1}$と$S_{n-2}$で表せ

(2)
$\beta^3$以下の最大の整数を求めよ

(3)
$a^{2003}$以下の最大の整数の1の位の数を求めよ

出典:2003年東京大学 過去問
この動画を見る 

確率漸化式

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$1~3n$の整数を$A,B,C$3つの組に分ける。
$A$の合計が3の倍数になる確率$P_n$を求めよ。
※数字が1つも入らない組があってもよい
この動画を見る 
PAGE TOP