福田のおもしろ数学374〜365と366を1から365までの整数で割った余りの総和の大小比較 - 質問解決D.B.(データベース)

福田のおもしろ数学374〜365と366を1から365までの整数で割った余りの総和の大小比較

問題文全文(内容文):
$360$を$1,2,3,…,365$で割った余りの総和を$A$、$366$を$1,2,3,…,365$で割った余りの総和を$B$とする。$A$と$B$の大小を比較せよ。
単元: #数列#数列とその和(等差・等比・階差・Σ)#漸化式
指導講師: 福田次郎
問題文全文(内容文):
$360$を$1,2,3,…,365$で割った余りの総和を$A$、$366$を$1,2,3,…,365$で割った余りの総和を$B$とする。$A$と$B$の大小を比較せよ。
投稿日:2025.01.10

<関連動画>

大学入試問題#595「山口大学に初挑戦!」 山口大学(2014) #数列

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#山口大学#数B#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$a_n=\tan\displaystyle \frac{\pi}{2^{n+1}}$のとき
$\displaystyle \lim_{ n \to \infty } \displaystyle \frac{a_{n+1}}{a_n}$を求めよ

出典:2014年山口大学 入試問題
この動画を見る 

福田の数学〜整数部分の評価が難しい問題〜北里大学2023年医学部第1問(3)〜漸化式と整数部分の評価

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#漸化式#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$a=3+\sqrt{10},b=3-\sqrt{10}$とし、正の整数nに対して$A_n=a^n+b^n$とおく。
このとき、$A_{2} ,A_{3}$の値はそれぞれ$A_{2}=\fbox{ク},A_{3}=\fbox{ケ}$であり、
$A_{n+2}$を$A_{n+1},A_{n}$を用いて表すと$A_{n+2}=\boxed{コ}$である。
また、$a^{111}$の整数部分を$k$とするとき、kを10で割ると$\boxed{サ}$余る。

2023北里大学医過去問
この動画を見る 

数列 大阪大

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$は自然数であり,$a_n=2^n,b_n=3n+2$とする.
数列${a_n}$の項のうち数列${b_n}$の項でもあるものを小さい順に並べた数列${C_n}$を求めよ.

1979大阪大過去問
この動画を見る 

【数B】数列:2020年駿台,高2,第2回全国模試 第6問(数列)の解説

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#数学(高校生)#駿台模試
指導講師: 理数個別チャンネル
問題文全文(内容文):
2020年駿台,高2,第2回全国模試 第6問
数列{$a_n$},{$b_n$},{$c_n$}を次のように定める。$a_1=1, a_{n+1}=2a_n+1, b_1=1, b_{n+1}=2b_n+a_n, c_1=1, c_{n+1}=3c_n+b_n (n=1,2,3,...)$。次の問いに答えよう。
(1){$a_n$}の一般項を求めよう。
(2)$d_n=\dfrac{b_n}{2^(n-1)}$とおくとき、
 (i)$d_{n+1}$を$d_n$を用いて表そう。 (ii){$d_n$}の一般項を求めよう。
(3){$c_n$}の一般項を求めよう。
この動画を見る 

大学入試問題#538「数列のバリューセット」 室蘭工業大学(2018) #数列

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#室蘭工業大学
指導講師: ますただ
問題文全文(内容文):
$a_1=\displaystyle \frac{1}{2}$
$a_{n+1}=\displaystyle \frac{(n+1)a_n}{n+3^na_n}$のとき
一般項$a_n$を求めよ

出典:2018年室蘭工業大学 入試問題
この動画を見る 
PAGE TOP