福田の数学〜立教大学2025理学部第1問(2)〜内積と絶対値の計算問題 - 質問解決D.B.(データベース)

福田の数学〜立教大学2025理学部第1問(2)〜内積と絶対値の計算問題

問題文全文(内容文):

$\boxed{1}$

(2)$2$つの平面ベクトル$\overrightarrow{a},\overrightarrow{b}$は、

$\vert \overrightarrow{a}+\overrightarrow{b} \vert=4,\vert \overrightarrow{a}-\overrightarrow{b} \vert =2$を満たすとする。

このとき、内積$\overrightarrow{a}・\overrightarrow{b}$の値は$\boxed{イ}$である。

また、$\vert 2\overrightarrow{a}-3\overrightarrow{b} \vert^2+\vert 3 \overrightarrow{a}-2\overrightarrow{b} \vert^2$の値は$\boxed{ウ}$である。

$2025$年立教大学理学部過去問題
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(2)$2$つの平面ベクトル$\overrightarrow{a},\overrightarrow{b}$は、

$\vert \overrightarrow{a}+\overrightarrow{b} \vert=4,\vert \overrightarrow{a}-\overrightarrow{b} \vert =2$を満たすとする。

このとき、内積$\overrightarrow{a}・\overrightarrow{b}$の値は$\boxed{イ}$である。

また、$\vert 2\overrightarrow{a}-3\overrightarrow{b} \vert^2+\vert 3 \overrightarrow{a}-2\overrightarrow{b} \vert^2$の値は$\boxed{ウ}$である。

$2025$年立教大学理学部過去問題
投稿日:2025.06.04

<関連動画>

【高校数学】 数B-12 ベクトルの内積①

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$\overrightarrow{ 0 }$でない2つのベクトル$\overrightarrow{ a },\overrightarrow{ b }$
のなす角を$\theta$とする。
このとき、①____を$\overrightarrow{ a }$と$\overrightarrow{ b }$の内積といい、記号$\overrightarrow{ a }・\overrightarrow{ b }$で表す。$(0° \leqq \theta \leqq 180°)$

◎$|\overrightarrow{ a }|=5$、$|\overrightarrow{ b }|=4$とし、$\overrightarrow{ a }$と$\overrightarrow{ b }$のなす角を$\theta$とする。次の各場合の内積$\overrightarrow{ a }・\overrightarrow{ b }$を求めよう。

①$\theta=60°$

②$\theta=150°$

③$\theta=90°$

④$\theta=180°$

※図は動画内参照
この動画を見る 

福田の数学〜空間における三角形の外心はどうやって求める〜杏林大学2023年医学部第2問前編〜空間ベクトルと三角形の外心

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学#数C
指導講師: 福田次郎
問題文全文(内容文):
点 O を原点とする座標空間に 3 点 A(-1,0,-2), B(-2,-2, -3 ), C(1, 2,- 2 )がある。
(a)ベクトル$\overrightarrow{ AB }と\overrightarrow{ AC }の内積は\overrightarrow{ AB }・\overrightarrow{ AC }=\fbox{ アイ }$であり、
$\angle ABCの外接円の半径は\sqrt{\fbox{ウエ}}$である。$\angle ABC$の外接円の中心を点 P とすると、
$\overrightarrow{ AP }=\fbox{オ}\overrightarrow{ AB }+\frac{\fbox{カ}}{\fbox{キ}}\overrightarrow{ AC }$
が成り立つ。

2023杏林大学過去問
この動画を見る 

【高校数学】 数B-54 空間における平面・直線の方程式②

アイキャッチ画像
単元: #数Ⅱ#平面上のベクトル#図形と方程式#点と直線#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次のような直線の方程式を媒介変数$t$を用いて表そう.

①点$(3,2,1)$を通り,$\overrightarrow{a}=(0,2,1)$に平行な直線

②2点$(5,8,-7),(6,-9,3)$を通る直線

③点$(2,-1,3)$を通り,ベクトル$(5,2,-2)$に平行な直線と,
平面$3x-2y=-4$との交点の座標を求めよう.
この動画を見る 

福田の数学〜慶應義塾大学2025経済学部第5問〜空間における平面と平面の交線

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{5}$

座標平面の原点$O$を中心とする半径$1$の

球面を$C$、点$M(4,0,0)$を中心とする

半径$2$の球面上を$D$とする。

(1)$p,q$を実数とする。

$xy$平面上の直線$y=px+q$は、

球面$C$と$xy$平面が交わってできる円と

点$A_1$で接し、球面$D$と$xy$平面が交わって

できる円と点$A_2$で接し、かつ

$0 \lt p 1$を満たすとする。$p$と$q$の値を求めよ。

(2)$r,s$を実数とする。

$zx$平面上の直線$z=rx+s$は、球面$C$と

$zx$平面が交わってできる円と点$B_1$で接し、

球面$D$と$zx$平面が交わってできる円と点$B_2$で

接し、かつ、$r \lt -1$を満たすとする。

$r$と$s$の値を求めよ。

以下、点$E$は$\overrightarrow{ A_1 E }=(0,0,1)$を満たすとし、

$3$点$A_1,A_2,E$を通る平面を$\alpha$とする。

また、点$F$は$\overrightarrow{ B_1 E }=(0,1,0)$を満たすとし、

$3$点$B_1,B_2,F$を通る平面を$\beta$とする。

$\alpha$と$\beta$が交わってできる直線を

$\ell$とし、$\ell$と$xy$平面の交点を

$G,\ell$と$zx$平面の交点を$H$とする。

(3)$G$の座標を求めよ。

(4)$\ell$上の点$T$を、実数$t$を用いて

$\overrightarrow{OT}=\overrightarrow{OG}+t\overrightarrow{OH}$と表す。

$\triangle OMT$の面積が最小となる$t$の値の求めよ。

$2025$年慶應義塾大学経済学部過去問題
この動画を見る 

【高校数学】 数B-33 平面上の点の存在位置②

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎△OABに対し、$\overrightarrow{ OP }=s\overrightarrow{ OA }+t\overrightarrow{ OB } $とする。実数S,tが次の条件を満たしながら動くとき、 点Pの存在範囲を図示しよう。

①$s+t \leqq \displaystyle \frac{1}{2},s \geqq 0,t \geqq 0$

②$3s+2t \leqq 3,S \geqq 0,t \geqq 0$
この動画を見る 
PAGE TOP