【わかりやすく】弧度法について解説(数学Ⅱ 三角関数) - 質問解決D.B.(データベース)

【わかりやすく】弧度法について解説(数学Ⅱ 三角関数)

問題文全文(内容文):
次の角を弧度法で表せ。
(1)
$30^{ \circ }$

(2)
$45^{ \circ }$

(3)
$120^{ \circ }$

(4)
$-90^{ \circ }$

(5)
$108^{ \circ }$

(6)
$390^{ \circ }$

(7)
$\displaystyle \frac{\pi}{3}$

(8)
$\displaystyle \frac{7}{6}\pi$

(9)
$\displaystyle \frac{9}{4}\pi$

(10)
$-\displaystyle \frac{5}{12}n$

(11)
$\displaystyle \frac{11}{2}\pi$

(12)
$3$
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の角を弧度法で表せ。
(1)
$30^{ \circ }$

(2)
$45^{ \circ }$

(3)
$120^{ \circ }$

(4)
$-90^{ \circ }$

(5)
$108^{ \circ }$

(6)
$390^{ \circ }$

(7)
$\displaystyle \frac{\pi}{3}$

(8)
$\displaystyle \frac{7}{6}\pi$

(9)
$\displaystyle \frac{9}{4}\pi$

(10)
$-\displaystyle \frac{5}{12}n$

(11)
$\displaystyle \frac{11}{2}\pi$

(12)
$3$
投稿日:2023.08.30

<関連動画>

福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題1[1]。三角関数の問題。

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#加法定理とその応用#センター試験・共通テスト関連#学校別大学入試過去問解説(数学)#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$[1](1)次の問題Aについて考えよう。
問題A 関数$y=\sin\theta+\sqrt3\cos\theta (0 \leqq \theta \leqq \frac{\pi}{2})$の最大値を求めよ。

$\sin\frac{\pi}{\boxed{ア}}=\frac{\sqrt3}{2}, \cos\frac{\pi}{\boxed{ア}}=\frac{1}{2}$ であるから、三角関数の合成により
$y=\boxed{イ}\sin(\theta+\frac{\pi}{\boxed{ア}})$
と変形できる。よって、yは$\theta=\frac{\pi}{\boxed{ウ}}$で最大値$\boxed{エ}$をとる。

(2)pを定数とし、次の問題Bについて考えよう。
問題B 関数$y=\sin\theta+p\cos\theta (0 \leqq \theta \leqq \frac{\pi}{2})$の最大値を求めよ。
$(\textrm{i})p=0$のとき、yは$\theta=\frac{\pi}{\boxed{オ}}$で最大値$\boxed{カ}$をとる。

$(\textrm{ii})p \gt 0$のときは、加法定理$\cos(\theta-\alpha)=\cos\theta\cos\alpha+\sin\theta\sin\alpha$を用いると
$y=\sin\theta+p\cos\theta=\sqrt{\boxed{キ}}\cos(\theta-\alpha)$

と表すことができる。ただし$\alphaは\sin\alpha=\frac{\boxed{ク}}{\sqrt{\boxed{キ}}}, \cos\alpha=\frac{\boxed{ケ}}{\sqrt{\boxed{キ}}}, 0 \lt \alpha \lt \frac{\pi}{2}$

を満たすものとする。このとき、yは$\theta=\boxed{コ}$で最大値$\sqrt{\boxed{サ}}$をとる。

$(\textrm{iii})p \lt 0$のとき、$y$は$\theta=\boxed{シ}$で最大値$\sqrt{\boxed{ス}}$をとる。

$\boxed{キ}~\boxed{ケ}、\boxed{サ}、\boxed{ス}$の解答群
⓪-1   ①1   ②-p   ③p   \\
④1-p   ⑤1+p   ⑥-p^2   ⑦p^2   ⑧1-p^2   \\
⑨1+p^2   ⓐ(1-p)^2   ⓑ(1+p^2)   \\

$\boxed{コ}、\boxed{シ}$の解答群
⓪$0$    ①$\alpha$    ②$\frac{\pi}{2}$

2021共通テスト数学過去問
この動画を見る 

京都大学 5倍角の公式

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#数Ⅱ#三角関数#三角関数とグラフ
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)$\cos5\theta=f(\cos\theta)$を満たす多項式$f(n)$を求めよ.
(2)$\cos\dfrac{\pi}{10}\cos\dfrac{3\pi}{10}\cos\dfrac{7\pi}{10}\cos\dfrac{9\pi}{10}=\dfrac{5}{16}$を示せ.

1996京都大過去問
この動画を見る 

福田の数学〜慶應義塾大学2021年看護医療学部第1問(2)〜三角方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#図形と方程式#三角関数#剰余の定理・因数定理・組み立て除法と高次方程式#三角関数とグラフ#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 
(2)$2(\cos\theta-\sin\theta)^2=1$を満たす$\theta$を$0 \leqq \theta \leqq \pi$の範囲で求めると$\boxed{\ \ イ\ \ }$である。

2021慶應義塾大学看護医療学部過去問
この動画を見る 

福田の数学〜上智大学2023年TEAP利用型文系第1問〜三角関数の最大最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 関数
$y$=2($\sin^3x$+$\cos^3x$)+8$\sin x\cos x$+5 (0≦$x$<2$\pi$)
を考える。$\sin x$+$\cos x$=$t$ とおく。
(1)$y$を$t$の式で表すと
$y$=$\boxed{\ \ ア\ \ }t^3$+$\boxed{\ \ イ\ \ }t^2$+$\boxed{\ \ ウ\ \ }t$+$\boxed{\ \ エ\ \ }$
である。
(2)関数$y$は$t$=$\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ カ\ \ }}$において最小値$\frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}$をとる。
(3)関数$y$は$x$=$\frac{\boxed{\ \ ケ\ \ }}{\boxed{\ \ コ\ \ }}\pi$において最大値$\boxed{\ \ サ\ \ }$+$\sqrt{\boxed{\ \ コ\ \ }}$をとる。
この動画を見る 

【数学Ⅰ/三角比】三角比の最大・最小(二次関数)

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$0^{ \circ } \leqq \theta \leqq 180^{ \circ }$のとき、$y=3-2\sin^2\theta-\cos\theta$の最大値と最小値を求めよ。
この動画を見る 
PAGE TOP