【わかりやすく】弧度法について解説(数学Ⅱ 三角関数) - 質問解決D.B.(データベース)

【わかりやすく】弧度法について解説(数学Ⅱ 三角関数)

問題文全文(内容文):
次の角を弧度法で表せ。
(1)
$30^{ \circ }$

(2)
$45^{ \circ }$

(3)
$120^{ \circ }$

(4)
$-90^{ \circ }$

(5)
$108^{ \circ }$

(6)
$390^{ \circ }$

(7)
$\displaystyle \frac{\pi}{3}$

(8)
$\displaystyle \frac{7}{6}\pi$

(9)
$\displaystyle \frac{9}{4}\pi$

(10)
$-\displaystyle \frac{5}{12}n$

(11)
$\displaystyle \frac{11}{2}\pi$

(12)
$3$
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の角を弧度法で表せ。
(1)
$30^{ \circ }$

(2)
$45^{ \circ }$

(3)
$120^{ \circ }$

(4)
$-90^{ \circ }$

(5)
$108^{ \circ }$

(6)
$390^{ \circ }$

(7)
$\displaystyle \frac{\pi}{3}$

(8)
$\displaystyle \frac{7}{6}\pi$

(9)
$\displaystyle \frac{9}{4}\pi$

(10)
$-\displaystyle \frac{5}{12}n$

(11)
$\displaystyle \frac{11}{2}\pi$

(12)
$3$
投稿日:2023.08.30

<関連動画>

3次関数 三角形の面積最大 お茶の水女子大

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#三角形の辺の比(内分・外分・二等分線)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)#お茶の水女子大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3-6x^2+8x$,3点$O,A(3,f(3))$,$P(t,f(t)),0\lt t\leqq 4,t\neq 3$である.
$\triangle OAP$の面積が最大となる$t$の値を求めよ.

1987お茶の水女子大過去問
この動画を見る 

京都府立医・長崎大 三角関数 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#加法定理とその応用#学校別大学入試過去問解説(数学)#数学(高校生)#長崎大学#京都府立医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
京都府立医科大学
$sinx+sin2x+sin3x=cosx+cos2x$
$+cos3x$を解け

長崎大学過去問題
$0 \leqq x \leqq \pi$
cos2x+4asinx+a-2=0
相異2実根をもつaの範囲
この動画を見る 

大学入試問題#916「これは受験生に失礼」 #東海大学医学部2024 #三角関数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)#東海大学
指導講師: ますただ
問題文全文(内容文):
$\sin\alpha-\sin\beta=\displaystyle \frac{1}{3}$
$\cos\alpha+\cos\beta=\displaystyle \frac{1}{5}$
のとき、$\cos(\alpha+\beta)$の値を求めよ。

出典:2024年東海大学医学部
この動画を見る 

福田の数学〜明治大学2021年理工学部第1問(2)〜三角関数の最大最小

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#加法定理とその応用#数学(高校生)#大学入試解答速報#数学#明治大学
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(2)座標平面上に2点$A(\frac{5}{8},0),\ B(0,\frac{3}{2})$をとる。Lは原点を通る直線で、Lが
x軸の正の方向となす角$\thetaは0 \leqq \theta \leqq \frac{\pi}{2}$の範囲にあるとする。ただし、角$\theta$の
符号は時計の針の回転と逆の向きを正の方向とする。点Aと直線Lとの距離を
$d_A$、点Bと直線Lの距離を$d_B$とおく。このとき、

$d_A+d_B=\frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }}\sin\theta+\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}\cos\theta$
である。$\theta$が$0 \leqq \theta \leqq \frac{\pi}{2}$の範囲を動くとき、
$d_A+d_B$の最大値は$\frac{\boxed{\ \ シス\ \ }}{\boxed{\ \ セ\ \ }}$であり、
最小値は$\frac{\boxed{\ \ ソ\ \ }}{\boxed{\ \ タ\ \ }}$である。

2021明治大学理工学部過去問
この動画を見る 

【数Ⅱ】三角関数と方程式 5 三角関数と対称式【t=sinx+cosxで置換しよう】

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
$(1) \sin2x=\cos x(0 \leqq x \lt 2\pi)$
$(2)\sin x+\sqrt3 \cos x=1(0 \leqq x \lt 2\pi)$
$(3)2\sin^2x+7\sin x+3=0(0 \leqq x \lt 2\pi)$
$(4)\sin^2x+\sin x \cos x-1=0(0 \leqq x \lt 2\pi)$
$(5)\sin x+\cos x+2\sin x \cos x-=0(0 \leqq x \lt 2\pi)$
この動画を見る 
PAGE TOP