福田のおもしろ数学564〜1分チャレンジ!数値計算 - 質問解決D.B.(データベース)

福田のおもしろ数学564〜1分チャレンジ!数値計算

問題文全文(内容文):

$\dfrac{2025^3+2024^3+3\cdot 2025\cdot 2024-1}{2026^2+2025^2+1}$

を計算して下さい。
    
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\dfrac{2025^3+2024^3+3\cdot 2025\cdot 2024-1}{2026^2+2025^2+1}$

を計算して下さい。
    
投稿日:2025.07.19

<関連動画>

【高校数学】  数Ⅱ-8  分数式の計算①

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎約分して既約分数にしよう。

①$\displaystyle \frac{8ax^2y^2}{48a^2xy^2}$

②$\displaystyle \frac{x^2-3x+2}{x^2-4x+3}$

③$\displaystyle \frac{4x^3+8xy^2}{12x^2}$

④$\displaystyle \frac{x^2-1}{x^3-1}$

◎計算しよう。

⑤$\displaystyle \frac{x}{x-1} \times \displaystyle \frac{x^2-1}{3x}$

⑥$\displaystyle \frac{x^2-x-6}{x^2+x} \times \displaystyle \frac{x^2-1}{x^2-5x+6}$
この動画を見る 

【上手に文字を置ける?】多項式の割り算の入試問題【流通科学大学】【数学】

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
整式$f(x)=x^3+ax^2+bx+c$を$(x+1)^2$で割ると余りが$2x+7$であり、
$x-1$で割ると余りが$17$である。
このときの、$a,b,c$の値は?

流通科学大過去問
この動画を見る 

島根大 愛知工大 整数・複素数 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#複素数平面#恒等式・等式・不等式の証明#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#島根大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
島根大学過去問題
a,b,c実数
$a+b+c=3$
$ab+bc+ca \leqq 3$を示せ。

愛知工業大学過去問題
$Z=1-i$
$Z^7+Z^6+Z^5+Z^4+Z^3+Z^2+Z+1$の値
この動画を見る 

【数Ⅱ】【式と証明】整式の割り算1 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の各場合について、定数$a,b$の値を求めよ。
(1) $2x^2+ax+10$を$x^2-3x+b$で割ると、余りが$3x-2$ である。
(2) $x^3+ax^2-5x+4$を$x^2+bx-2$で割ると、余りが$2$である。
この動画を見る 

福田の数学〜大阪大学2025理系第4問〜不等式の証明と関数の極限

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{4}$

次の問いに答えよ。

(1)$t\gt 0$のとき

$-\dfrac{1}{t}\lt \displaystyle \int_{t}^{2t} \dfrac{\sin x}{x^2}dx \lt \dfrac{1}{t}$

が成り立つことを示せ。

(2)$\displaystyle \lim_{t\to\infty}\displaystyle \dfrac{\cos x}{x}dx=0$を示せ。

(3)$f(x)=\sin\left(\dfrac{3x}{2}\right)\sin\left(\dfrac{x}{2}\right)$おく。

$\displaystyle \lim_{t\to\infty}\displaystyle \int_{1}^{t} \dfrac{f(x)}{x}dx=\dfrac{1}{2} \displaystyle \int_{1}^{2} \dfrac{\cos x}{x} dx$

を示せ。

$2025$年大阪大学理系過去問題
この動画を見る 
PAGE TOP