3乗根の方程式 - 質問解決D.B.(データベース)

3乗根の方程式

問題文全文(内容文):
実数解を求めよ.
$\sqrt[3]{(8-x)^2}-\sqrt[3]{(8-x)(27+x)}+$
$\sqrt[3]{(27+x)^2}=7$
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
実数解を求めよ.
$\sqrt[3]{(8-x)^2}-\sqrt[3]{(8-x)(27+x)}+$
$\sqrt[3]{(27+x)^2}=7$
投稿日:2021.08.18

<関連動画>

神戸大 複素数 三次方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$z^3-2|z|+1=0$を満たす$z$のうち実数でないものの個数を求めよ

出典:1968年神戸大学 過去問
この動画を見る 

福田の数学〜中央大学2022年理工学部第4問〜複素数平面上の共線条件と正三角形になる条件

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#剰余の定理・因数定理・組み立て除法と高次方程式#図形への応用#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
中央大学2022年理工学部第4問解説です

tを実数とし、 xの3次式f(x) を
ƒ(x) = x³ + (1 − 2t)x² + (4 − 2t)x +4
により定める。以下の問いに答えよ。
(1) 3 次式f(x) を実数係数の2次式と1次式の積に因数分解し、f(x)=0 が虚数の
解をもつようなtの範囲を求めよ。
実数t が (1) で求めた範囲にあるとき、 方程式 f(x) = 0 の異なる2つの虚数解を
a,βとし、実数解をγとする。ただし、αの虚部は正、βの虚部は負とする。
以下、α, β,γを複素数平面上の点とみなす。
(2) α, β,γをtを用いて表せ。また、実数t が (1) で求めた範囲を動くとき、点α
が描く図形を複素数平面上に図示せよ。
(3) 3点 α, β, γが一直線上にあるようなtの値を求めよ。
(4) 3点 α, β, γが正三角形の頂点となるようなtの値を求めよ。
この動画を見る 

【数Ⅱ】複素数の計算【簡単なようで間違えやすい計算】

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
$ iと等しいものを2つ選べ.
\dfrac{1}{i^3},\sqrt{-\dfrac{1}{2}}\sqrt{-2}i,\dfrac{1}{\sqrt{-1}},\dfrac{-3+2i}{2+3i}$
この動画を見る 

式の値 基本

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \dfrac{a}{a^2+5a+1}=5$のとき,
$\dfrac{a^2}{a^4+5a^2+1}=?$
これを解け.
この動画を見る 

慈恵医大 複素数 3次方程式 有理数解の有無 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#東京慈恵会医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\theta=\displaystyle \frac{2}{9}\pi, \alpha=\cos \theta+i \sin \theta$
$\beta=\alpha+\alpha^8$

(1)
$\beta$は実数であることを示せ


(2)
$\beta$は整数係数の三次方程式の解である。
その方程式を求めよ。

(3)
(2)で求めた方程式は有理数の解をもたないことを示せ。

出典:2004年東京慈恵会医科大学 過去問
この動画を見る 
PAGE TOP