3乗根の方程式 - 質問解決D.B.(データベース)

3乗根の方程式

問題文全文(内容文):
実数解を求めよ.
$\sqrt[3]{(8-x)^2}-\sqrt[3]{(8-x)(27+x)}+$
$\sqrt[3]{(27+x)^2}=7$
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
実数解を求めよ.
$\sqrt[3]{(8-x)^2}-\sqrt[3]{(8-x)(27+x)}+$
$\sqrt[3]{(27+x)^2}=7$
投稿日:2021.08.18

<関連動画>

明治大 3倍角の公式と3次方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$3$倍角の公式を利用して$x^3-3x-1=0$の$3$つの解を$cos$を用いて答えよ.

2020明治大過去問
この動画を見る 

【そこに解が見えている…!】解と係数の関係:二次方程式(その3)~中学からの二次方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ x^2+x+2=0$の2つの解を$ \alpha,\beta $とし,
$ \alpha^n+\beta^n=S(n)$とおくとき,
$ S(1),S(2),S(3),S(4),S(5)$を求めよ.
この動画を見る 

ただの対数方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$\log_2 x+\log_3 x=1$
この動画を見る 

福田のおもしろ数学456〜5変数の連立方程式

アイキャッチ画像
単元: #連立方程式#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

実数$x,y,z,w,t$に対して次の連立方程式を解け。

$\begin{eqnarray}
\left\{
\begin{array}{l}
\hspace{ 2pt } x^5=y+y^5= \cdots ① \\
\hspace{ 2pt }y^5=z+z^5=\cdots ② \\\
\hspace{ 0.1pt }z^5=w+w^5=\cdots ③ \\\
\hspace{ 0.2pt }w^5=t+t^5=\cdots ④ \\\
\hspace{ 1pt }t^5=x+x^5= \cdots ⑤
\end{array}
\right.
\end{eqnarray}$
    
この動画を見る 

実数解の個数 山梨大 三次方程式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#微分法と積分法#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#山梨大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$2x^3-3kx^2+1=0$
(1)
実数解が1つである$k$の範囲は?

(2)
実数解が1つでその絶対値が1未満である$k$の範囲は?

出典:2002年山梨大学 過去問
この動画を見る 
PAGE TOP