3乗根の方程式 - 質問解決D.B.(データベース)

3乗根の方程式

問題文全文(内容文):
実数解を求めよ.
$\sqrt[3]{(8-x)^2}-\sqrt[3]{(8-x)(27+x)}+$
$\sqrt[3]{(27+x)^2}=7$
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
実数解を求めよ.
$\sqrt[3]{(8-x)^2}-\sqrt[3]{(8-x)(27+x)}+$
$\sqrt[3]{(27+x)^2}=7$
投稿日:2021.08.18

<関連動画>

【使えるものは使おう…!】解と係数の関係の逆:二次方程式(その4)~中学からの二次方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ 3x^2-2x+4=3$の2つの解を$ \alpha,\beta$とするとき,
$ \alpha+3,\beta+3 $を解とする2次方程式をつくれ.
この動画を見る 

3乗根の方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
実数解を求めよ.
$ x^3+1=2\sqrt[3]{2x-1}$
この動画を見る 

複素数の基本問題 岡山県立大

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数と方程式
指導講師: 鈴木貫太郎
問題文全文(内容文):
2022岡山県立大学過去問題
$z=1+\sqrt{3}+(\sqrt{3}-1)i$
$z^{n}$が正の実数となる自然数nは100以下に何個あるか?
この動画を見る 

東京電機大 複素数のべき乗

アイキャッチ画像
単元: #複素数と方程式#複素数#指数関数#数列
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(1+2i)^n=x_n+y_ni$
(1)$x^2_n+y^2_n$を求めよ.
(2)$x_{n+2}$を$x_{n+1}$と$x_n$で表せ.
(3)$x_n$と$y_n$の最大公約数を求めよ.

東京電機大過去問
この動画を見る 

整式の剰余

アイキャッチ画像
単元: #数Ⅱ#式と証明#複素数と方程式#整式の除法・分数式・二項定理#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^{2024}+ax^6+bx^4+cx+2\ $が
$x^4+x^2+1$で割り切れるような整数a,b,cを求めよ

この動画を見る 
PAGE TOP