【数B】【数列】その他の数列1 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数B】【数列】その他の数列1 ※問題文は概要欄

問題文全文(内容文):
数列 {an}
a1+2a2+3a3++nan=n(n+1)
を満たすとき、和 a1+a2+an を求めよ。
チャプター:

00:00 OP
00:46 解説

単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 理数個別チャンネル
問題文全文(内容文):
数列 {an}
a1+2a2+3a3++nan=n(n+1)
を満たすとき、和 a1+a2+an を求めよ。
投稿日:2025.03.17

<関連動画>

大阪府立大 漸化式と数学的帰納法・合同式の基本問題

アイキャッチ画像
単元: #大学入試過去問(数学)#漸化式#大阪府立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
3(an+1)+42n1は13の倍数であることを示せ.

大阪府立大(経済)過去問
この動画を見る 

【数B】第1項から第10項までの和が4、第1項から第20項までの和が24である等比数列について、第1項から第40項までの和を求めよ

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
第1項から第10項までの和が4、第1項から第20項までの和が24である等比数列について、第1項から第40項までの和を求めよ
この動画を見る 

【数B】数列:部分分数分解の基本! 次の和S[n]を求めよ。S[n]=1/(1×5)+1/(5×9)+1/(9×13)+...+1/(4n-3)(4n+1)

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の和Snを求めよ。
Sn=115+159+1913+...+1(4n3)(4n1)
この動画を見る 

最速。2020年センター試験解説。福田の入試問題解説〜2020年センター試験IIB第3問〜数列と漸化式、余りの問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#漸化式#センター試験・共通テスト関連#センター試験#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
3
数列{an}は、初項a10であり、n=1,2,3,のとき次の漸化式を
満たすものとする。
an+1=n+3n+1{3an+3n+1(n+1)(n+2)} 

(1)a2=     である。

(2)bn=an3n(n+1)(n+2)とおき、数列{bn}の一般項を求めよう。
{bn}の初項b1    である。①の両辺を3n+1(n+2)(n+3)
割ると
bn+1=bn+    (n+    )(n+    )(1    )n+1

を得る。ただし、    <    とする。

したがって

bn+1bn=(    n+        n+    )(1    )n+1
である。

nを2以上の自然数とするとき

k=1n1(    k+        k+    )=1    (n    n+    )

k=1n1(1    )k+1=                (1    )n

が成り立つことを利用すると

bn=n        (n+    )+        (1    )n

が得られる。これはn=1のときも成り立つ。

(3)(2)により、{an}の一般項は
an=    n(n2    )+(n+    )(n+    )    

で与えられる。ただし、    <    とする。
このことから、すべての自然数nについて、
anは整数となることが分かる。

(4)kを自然数とする。a3k,a3k+1,a3k+2で割った余りはそれぞれ
    ,     ,     である。また、{an}の初項から
第2020項までの和を3で割った余りは    である。

2020センター試験過去問
この動画を見る 

富山大 積分のフリしたただの漸化式

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
a1=1,b=0,c1=4
an+4x2+bn+1x+cn+1=2x(an+bn)t+nat
an,bn,cnの一般項を求めよ.

2021富山大過去問
この動画を見る 
PAGE TOP preload imagepreload image