福田の一夜漬け数学〜数列・漸化式(1)〜高校2年生 - 質問解決D.B.(データベース)

福田の一夜漬け数学〜数列・漸化式(1)〜高校2年生

問題文全文(内容文):
次の漸化式を解け。(すべて、$a_1=1$とする)

①$a_{n+1}=a_n+2$

②$a_{n+1}=2a_n$

③$a_{n+1}=2a_n+2$

④$a_{n+1}=a_n+2n$

⑤$a_{n+1}=2a_n+2^n$

⑥$a_{n+1}=2a_n+2n$
単元: #数列#数列とその和(等差・等比・階差・Σ)#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
次の漸化式を解け。(すべて、$a_1=1$とする)

①$a_{n+1}=a_n+2$

②$a_{n+1}=2a_n$

③$a_{n+1}=2a_n+2$

④$a_{n+1}=a_n+2n$

⑤$a_{n+1}=2a_n+2^n$

⑥$a_{n+1}=2a_n+2n$
投稿日:2018.05.05

<関連動画>

福田の一夜漬け数学〜確率漸化式(1)〜京都大学の問題(受験編)

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $A,B,C$の3人が色のついた札を1枚ずつ持っている。初めに$A,B,C$
の持っている札の色はそれぞれ赤、白、青である。$A$がサイコロを
投げて、3の倍数の目が出たら$A$は$B$と持っている札を交換し、
その他の目が出たら$A$は$C$と札を交換する。この試行を$n$回繰り返し
た後に赤い札を$A,B,C$が持っている確率をそれぞれ$a_n,b_n,c_n$とする。

(1)$n \geqq 2$のとき、$a_n,b_n,c_n$を$a_{n-1},b_{n-1},b_{n-1}$で表せ。
(2)$a_n$を求めよ。
この動画を見る 

富山県立大 数学的帰納法・二項展開・合同式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学的帰納法#学校別大学入試過去問解説(数学)#数学(高校生)#数B#富山県立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$13^n+2・23^{n-1}$は常にある数の倍数であることを示せ

出典:富山県立大学 過去問
この動画を見る 

これの説明できますか?

アイキャッチ画像
単元: #数列#漸化式#数列の極限#数学(高校生)#数B#数Ⅲ
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1-1-+1-1-+1-1...
解説動画です
この動画を見る 

確率、等比数列 巴戦は平等な優勝決定法か?(類)東大、神戸大

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
確率、等比数列 巴戦は平等な優勝決定法か?

(類)東大、神戸大
この動画を見る 

福田の数学〜中央大学2021年経済学部第1問(5)〜漸化式の解法

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (5)\ 次の条件によって定められる数列\left\{a_n\right\}の一般項を求めよ。\\
a_1=-1, a_{n+1}=a_n+2・3^{n-1}  (n=1,2,3,\ldots)
\end{eqnarray}

2021中央大学経済学部過去問
この動画を見る 
PAGE TOP