福田の数学〜青山学院大学2024理工学部第5問〜関数の増減と無限級数の収束発散の判定 - 質問解決D.B.(データベース)

福田の数学〜青山学院大学2024理工学部第5問〜関数の増減と無限級数の収束発散の判定

問題文全文(内容文):
以下の問いに答えよ。
$(1)$ 関数 $\displaystyle{y=\frac{x}{x^2+1}}$ の増減、極値、グラフの凹凸および変曲点を調べて、そのグラフを描け。
$(2)$ $k$ を自然数とする。曲線 $\displaystyle{y=\frac{x}{x^2+1}}$ と $x$ 軸および2直線 $x=k$, $x=k+1$ で囲まれた図形の面積を $k$ を用いて表せ。
$(3)$ 無限級数
\begin{equation*}
\frac{1}{1^2+1}+\frac{2}{2^2+1}+\frac{3}{3^2+1}+\cdots+\frac{n}{n^2+1}+\cdots
\end{equation*}
の収束、発散を調べよ。
単元: #関数と極限#微分とその応用#積分とその応用#数列の極限#関数の変化(グラフ・最大最小・方程式・不等式)#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
以下の問いに答えよ。
$(1)$ 関数 $\displaystyle{y=\frac{x}{x^2+1}}$ の増減、極値、グラフの凹凸および変曲点を調べて、そのグラフを描け。
$(2)$ $k$ を自然数とする。曲線 $\displaystyle{y=\frac{x}{x^2+1}}$ と $x$ 軸および2直線 $x=k$, $x=k+1$ で囲まれた図形の面積を $k$ を用いて表せ。
$(3)$ 無限級数
\begin{equation*}
\frac{1}{1^2+1}+\frac{2}{2^2+1}+\frac{3}{3^2+1}+\cdots+\frac{n}{n^2+1}+\cdots
\end{equation*}
の収束、発散を調べよ。
投稿日:2024.09.16

<関連動画>

福田のわかった数学〜高校3年生理系079〜グラフを描こう(1)分数関数のグラフ

アイキャッチ画像
単元: #関数と極限#微分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ グラフを描こう(1)

$y=\frac{x^2}{x-1}$のグラフを描け。

ただし凹凸は調べなくてよい。
この動画を見る 

自然数の4乗の逆数の和 オイラー級数(Euler) やっぱりπが登場

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\frac{1}{1^4}$+$\frac{1}{2^4}$+$\frac{1}{3^4}$+$\frac{1}{4^4}$+$\cdots$$\frac{1}{n^4}$=$\frac{\pi^4}{90}$
この動画を見る 

【高校数学】数Ⅲ-69 数列の極限⑤(無限等比数列)

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の極限を求めよ。

①$\displaystyle \lim_{n\to\infty}3^n$

②$\displaystyle \lim_{n\to\infty}1^n$

③$\displaystyle \lim_{n\to\infty}\left(-\dfrac{1}{3}\right)^n$

④$\displaystyle \lim_{n\to\infty}(-3)^n$

⑤$\displaystyle \lim_{n\to\infty}\dfrac{3^n+4^n}{5^n}$

⑥$\displaystyle \lim_{n\to\infty}\dfrac{2^n}{1+2^n}$

⑦$\displaystyle \lim_{n\to\infty}\dfrac{5^n+3^n}{2^n-3^n}$

⑧$\displaystyle \lim_{n\to\infty}\dfrac{2^{n+1}-4^{n+1}}{3^n-4^n}$
この動画を見る 

福田の数学〜立教大学2024年理学部第1問(3)〜対数関数の極値と級数の和

アイキャッチ画像
単元: #関数と極限#積分とその応用#数列の極限#不定積分#定積分#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$$nは自然数とする。
f_{ n }(x)=x^{ \frac{ 1 }{ n }}\log x (x \gt0)がx=a_{ n }で極小値をとるとき、$$
$$a_{ n }=\boxed{ エ }である。このとき、\displaystyle \sum_{i=1}^n a_n=\boxed{ オ }である。$$
この動画を見る 

【数Ⅲ】【関数と極限】数列{(x/x²+2p)^n}がすべての実数xに対して収束するとき、pの値の範囲を求めよ。ただし、p>0とする。

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師: 理数個別チャンネル
問題文全文(内容文):
数列{$\dfrac{x}{x²+2p}^n$}が
すべての実数xに対して収束するとき、pの値の範囲を求めよ。
ただし、p>0とする。
この動画を見る 
PAGE TOP