【理数個別の過去問解説】2016年度京都大学 数学 理系第2問解説 - 質問解決D.B.(データベース)

【理数個別の過去問解説】2016年度京都大学 数学 理系第2問解説

問題文全文(内容文):
京都大学(理系)
2016年度(前期)第2問

p,qを素数とする。このとき$p^q+q^p$が素数となるようなp,qの値の組を全て求めよ。
チャプター:

0:00 オープニング
0:47 問題紹介
1:18 p.qの少なくとも一方が2であることの証明
3:41 実験してみる(予想を立てる)
6:13 q≧5のときp^q+q^pが3の倍数になることの証明

単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
京都大学(理系)
2016年度(前期)第2問

p,qを素数とする。このとき$p^q+q^p$が素数となるようなp,qの値の組を全て求めよ。
投稿日:2021.07.17

<関連動画>

整数問題2022 Σ10^10^k mod7

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\displaystyle \sum_{k=1}^{2022}10^{10^k}=10^{10}+10^{10^2}+・・・・・・+10^{10^{2022}}$を$7$で割った余りを求めよ.
この動画を見る 

東北大 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$3^a-2^n=1$ $a,b \varepsilon Z$

(1)
$a,b$はともに正、示せ

(2)
$b \gt 1$のとき、$a$偶数

(3)
$(a,b)$すべて求めよ

出典:2018年東北大学 過去問
この動画を見る 

大阪大 整数(素数)問題 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
'04大阪大学過去問題
p,q素数(p>2q)
$a_n=P^n-4(-q)^n$  n自然数
(1)$a_1$と$a_2$が1より大きい公約数mをもつならばm=3であることを示せ
(2)$a_n$が全て3の倍数であるようなp,qのうち積pqが最小となるものを求めよ。
この動画を見る 

京都大 3次関数 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3+2x^2+2$
$|f(n)$と$|f(n+1)|$がともに素数となるような整数$n$を求めよ

出典:2019年京都大学 過去問
この動画を見る 

数学的帰納法 合同式

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数学的帰納法#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$4^{3n-1}-7^{2n-2}$は15の倍数であることを示せ
この動画を見る 
PAGE TOP