【数Ⅱ】【式と証明】不等式の証明8 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅱ】【式と証明】不等式の証明8 ※問題文は概要欄

問題文全文(内容文):
(1)a>0のとき、a+16/a の最小値を求めよ。
(2)a>0のとき、(a+1/a)(a+16/a) の最小値を求めよ。
(3)a>0 ,b>0 ,ab=12のとき、a+b の最小値を
求めよ。
(4)a>0 ,b>0 ,$2a+3b=4\sqrt{2}$ のとき、abの最大値を求めよ。
チャプター:

0:00 オープニング
0:06 問題文
0:15 (1)解説
1:38 (2)解説
3:26 (3)解説
4:34 (4)解説

単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#式と証明#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1)a>0のとき、a+16/a の最小値を求めよ。
(2)a>0のとき、(a+1/a)(a+16/a) の最小値を求めよ。
(3)a>0 ,b>0 ,ab=12のとき、a+b の最小値を
求めよ。
(4)a>0 ,b>0 ,$2a+3b=4\sqrt{2}$ のとき、abの最大値を求めよ。
投稿日:2025.03.03

<関連動画>

18神奈川県教員採用試験(数学:5番 式変形)

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
5⃣
$x=3- \sqrt 2$
$x^4-6x^3+10x^2-13x+9$の値を求めよ。
この動画を見る 

高校範囲だけど中3生も解けるし

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{x^2-2}{x-1} + \frac{1}{x-1}$
この動画を見る 

相加相乗平均のエレガントな証明2通り

アイキャッチ画像
単元: #数Ⅱ#式と証明#指数関数と対数関数#指数関数
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \dfrac{a_1+a_2+・・・・+a_n}{n}\geqq \sqrt[n]{a_1,a_2・・・・a_n}$
これを求めよ.

この動画を見る 

福田の一夜漬け数学〜相加平均・相乗平均の関係〜その証明の考察3(受験編)

アイキャッチ画像
単元: #中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#数と式#式と証明#式の計算(整式・展開・因数分解)#一次不等式(不等式・絶対値のある方程式・不等式)#恒等式・等式・不等式の証明#文字と式
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $\displaystyle \frac{a+b+c+d}{4} \geqq \sqrt[4]{abcd}$ を既知として、$\displaystyle \frac{a+b+c}{3} \geqq \sqrt[3]{abc}$ を証明せよ。
ただし、$a,b,c,d$は全て正の数であるとする。

${\Large\boxed{2}}\ \boxed{1}$を利用して、$n$個の変数の相加・相乗平均の関係を証明せよ。
つまり、$n$個の正の数$a_1,a_2,\cdot,a_n$に対して
$\displaystyle \frac{a_1+a_2+\cdots+a_n}{n} $$\geqq \sqrt[n]{a_1a_2\cdots a_n}$
この動画を見る 

【数Ⅱ】【式と証明】不等式の証明3 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#式と証明#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
a>b≧c>0 のとき、次の空欄に記号≧ ,≦ ,> ,<のどれかを記入して正しい関係が成り立つようにせよ。ただし、これが不可能の場合には×とせよ。
(1)$2(ac+b^2 ) □ b(4a+c)$
(2)$a^2+2bc□2ab+ca$
(3)$a^2+2(b^2+c^2) □2a(b+c)$
この動画を見る 
PAGE TOP