難問!!最大公約数と最小公倍数の関係 西武文理 - 質問解決D.B.(データベース)

難問!!最大公約数と最小公倍数の関係  西武文理

問題文全文(内容文):
2けたの自然数A,B(A<B)があり、AとBの和は48
AとBの最小公倍数と最大公約数の和は96である。
自然数A,Bを求めよ。

西部学園文理高等学校
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
2けたの自然数A,B(A<B)があり、AとBの和は48
AとBの最小公倍数と最大公約数の和は96である。
自然数A,Bを求めよ。

西部学園文理高等学校
投稿日:2023.08.02

<関連動画>

宮崎大 数学的帰納法 合同式

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数学的帰納法#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_n=2^n+1$
$a_n$のうち5で割り切れるものを小さい順に並べた数列を$b_k$とする.

(1)$b_k$を推定せよ.
(2)(1)の推定が全ての自然数$k$で成立することを証明せよ.

宮崎大過去問
この動画を見る 

素因数分解

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$64000001$を素因数分解すると3つの素因数分解をもつ.
$pqr(p \lt q \lt r)q$の値を求めよ.
この動画を見る 

東邦(医) 整数 不定方程式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#東邦大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
'89東邦大学過去問題
0,n,-n (n自然数)のいずれかが書かれたカードが17枚、和が-24で平方の和は108である。
各カードの枚数とnの値。
この動画を見る 

福田の数学〜慶應義塾大学2023年薬学部第1問(7)〜n進法と割り算の余り

アイキャッチ画像
単元: #計算と数の性質#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#規則性(周期算・方陣算・数列・日暦算・N進法)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (7)整数Zはn進法で表すとk+1桁であり、$n^k$の位の数が4、$n^i$ (1≦i≦k-1)の位の数が0、$n^0$の位の数が1となる。ただし、nはn≧3を満たす整数、kはk≧2を満たす整数とする。
(i)k=3とする。Zをn+1で割った時の余りは$\boxed{\ \ テ\ \ }$である。
(ii)Zがn-1で割り切れるときのnの値をすべて求めると$\boxed{\ \ ト\ \ }$である。

2023慶應義塾大学薬学部過去問
この動画を見る 

共通テスト第2日程2021年数学詳しい解説〜共通テスト第2日程2021年IA第4問〜整数の性質

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large第4問}$
正の整数$m$に対して
$a^2+b^2+c^2+d^2=m, $$a \geqq b \geqq c \geqq d \geqq 0$ $\cdots$①
を満たす整数$a,b,c,d$の組がいくつあるかを考える。

(1)$m=14$のとき、①を満たす整数$a,b,c,d$の組$(a,b,c,d)$

$(\boxed{\ \ ア\ \ }, \boxed{\ \ イ\ \ }, \boxed{\ \ ウ\ \ }, \boxed{\ \ エ\ \ })$
のただ一つである。
また、$m=28$のとき、①を満たす整数$a,b,c,d$の組の個数は
$\boxed{\ \ オ\ \ }$個である。

(2)$a$が奇数のとき、整数$n$を用いて$a=2n+1$と表すことができる。
このとき、$n(n+1)$は偶数であるから、次の条件が全ての奇数$a$で成り立つ
ような正の整数$h$のうち、最大のものは$h=\boxed{\ \ カ\ \ }$である。

条件:$a^2-1$は$h$の倍数である。

よって、$a$が奇数の時、$a^2$を$\boxed{\ \ カ\ \ }$で割った時の余りは$1$である。
また、$a$が偶数の時、$a^2$を$\boxed{\ \ カ\ \ }$で割った時の余りは、$0$または$4$の
いずれかである。

(3)(2)により、$a^2+b^2+c^2+d^2$が$\boxed{\ \ カ\ \ }$の倍数ならば、整数$a,b,c,d$
のうち、偶数であるものの個数は$\boxed{\ \ キ\ \ }$個である。

(4)(3)を用いることにより、$m$が$\boxed{\ \ カ\ \ }$の倍数であるとき、①を満たす整数
$a,b,c,d$が求めやすくなる。
例えば、$m=224$のとき、①を満たす整数$a,b,c,d$の組$(a,b,c,d)$は
$(\boxed{\ \ クケ\ \ }, \boxed{\ \ コ\ \ }, \boxed{\ \ サ\ \ }, \boxed{\ \ シ\ \ })$
のただ1つであることが分かる。

(5)7の倍数で896の約数である正の整数$m$のうち、①を満たす整数$a,b,c,d$
の組の個数が$\boxed{\ \ オ\ \ }$個であるものの個数は$\boxed{\ \ ス\ \ }$個であり、
そのうち最大のものは$m=\boxed{\ \ セソタ\ \ }$である。

2021共通テスト過去問
この動画を見る 
PAGE TOP