大学入試問題#102 高知女子大学(1988) 無限級数 - 質問解決D.B.(データベース)

大学入試問題#102 高知女子大学(1988) 無限級数

問題文全文(内容文):
$\displaystyle \sum_{n=2}^\infty log(1+\displaystyle \frac{1}{n^2-1})$を求めよ。

出典:1988年高知女子大学 入試問題
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \sum_{n=2}^\infty log(1+\displaystyle \frac{1}{n^2-1})$を求めよ。

出典:1988年高知女子大学 入試問題
投稿日:2022.01.29

<関連動画>

数学「大学入試良問集」【17−5 図形と三角関数の極限】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#福島県立医科大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$O$を原点とする座標平面上に2点$A(2,0),B(0,1)$がある。
自然数$n$に対し、線分$AB$を$1:n$に内分する点を$P_n$とし、$\angle AOP_n\theta_n$とする。
ただし、$0 \lt \theta_n \lt \displaystyle \frac{\pi}{2}$である。
線分$AP_n$の長さを$l_n$として、$\displaystyle \lim_{ n \to \infty }\displaystyle \frac{l_n}{\theta_n}$を求めよ。
この動画を見る 

福田のおもしろ数学030〜調和級数は発散しない?〜驚くべき事実がここに

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
調和級数

$1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}…$

について解説します
この動画を見る 

福田の数学〜筑波大学2023年理系第5問〜関数の増減と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#微分法#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ $f(x)$=$x^{-2}e^x$ ($x$>0)とし、曲線$y$=$f(x)$をCとする。また$h$を正の実数とする。さらに、正の実数$t$に対して、曲線C、2直線$x$=$t$, $x$=$t$+$h$、および$x$軸で囲まれた図形の面積を$g(t)$とする。
(1)$g'(t)$を求めよ。
(2)$g(t)$を最小にする$t$がただ1つ存在することを示し、その$t$を$h$を用いて表せ。
(3)(2)で得られた$t$を$t(h)$とする。このとき極限値$\displaystyle\lim_{h \to +0}t(h)$を求めよ。
この動画を見る 

【数Ⅲ】 極限:r^nの極限を含むグラフの概形

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
関数の極限:$r^n$の極限:次の関数のグラフの概形をかき、関数の連続性を調べよう
$f(x)=\displaystyle \lim_{x\to\infty}\dfrac{x^{2n-1}+x+2}{x^{2n}+1}$
この動画を見る 

16神奈川県教員採用試験(数学:8番 数列の極限)

アイキャッチ画像
単元: #数列#漸化式#関数と極限#数列の極限#数学(高校生)#数B#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
8⃣ $3S_n=a_n+6n+1$のとき$\displaystyle \lim_{ n \to \infty } a_n$を求めよ。
この動画を見る 
PAGE TOP