大学入試問題#102 高知女子大学(1988) 無限級数 - 質問解決D.B.(データベース)

大学入試問題#102 高知女子大学(1988) 無限級数

問題文全文(内容文):
$\displaystyle \sum_{n=2}^\infty log(1+\displaystyle \frac{1}{n^2-1})$を求めよ。

出典:1988年高知女子大学 入試問題
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \sum_{n=2}^\infty log(1+\displaystyle \frac{1}{n^2-1})$を求めよ。

出典:1988年高知女子大学 入試問題
投稿日:2022.01.29

<関連動画>

福田の数学〜早稲田大学理工学部2025第5問〜無理関数のグラフ上に無数の有理点が存在する証明

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{5}$

$xy$平面上の曲線$C:y=\sqrt[3]{x^2+2}$と考え、

$C$上の$(0,\sqrt[3]{2})$以外の点$P(a,b)$における接線を

$\ell : y = kx +c$と表す。$C$と$\ell$の方程式から

$x$を消去して得られる$y$についての$3$次方程式

$f(y)=0$は$b$を重解としてもつので、もう$1$つの解を

$b'$とする。

ただし、$b'$が$3$重解のときは$b'=b$とみなす。

次の問いに答えよ。

(1)$2b+b'$を$k$のみの分数式で表せ。

(2)$b'$を$b$のみの分数式で表せ。

(3)$C$と$\ell$の共有点で、その$y$座標が$b'$であるものを

$P'(a',b')$とする。

$a$と$b$が有理数ならば、$a'$と$b'$も有理数であることを

示せ。

(4)$b$が奇数$p,q$と負でない整数$r$を用いて

$b=\dfrac{p}{2^r q}$で与えられるとする。

有理数$b'$を奇数$p',q'$と整数$s$を用いて$b'=\dfrac{p'}{2^s q'}$と

表すとき、$s$を$r$の式で表せ。

(5)$P(5,3)$が曲線$C$上の点であることを利用して、

$C$上に$x$座標と$y$座標がともに有理数であるような点が

無数に存在することを示せ。

$2025$年早稲田大学理工学部過去問題
この動画を見る 

極限の基本問題 愛知県立大

アイキャッチ画像
単元: #関数と極限#学校別大学入試過去問解説(数学)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2019愛知県立大学過去問題
$e=\displaystyle \lim_{ h \to 0 } (1+h)^\frac{1}{h} $
aは正の実数
$e=\displaystyle \lim_{ x \to \infty } \frac{1}{x^{x}}(x-a)^{x}$
の値
この動画を見る 

福田の数学〜千葉大学2024年理系第9問〜漸化式と極限

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#関数と極限#数列の極限#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$m$を$0$以上の整数、$n$を$1$以上の整数、$t$を $0 < t < 1$ を満たす実数とし、$F(m, n)$を
$F(m, n)= \displaystyle \sum_{k=m}^{m+n-1} {{}_k \mathrm{ C }_m t^k}$
で定める。

(1) $p$を整数とする。
$
A = \dfrac{(t - 1) F(m + 1, n) + tF(m, n)}{t ^ p}
$
が$t$によらない値となる$p$と、そのときの$A$を求めよ。

(2)極限 $\displaystyle \lim_{ n \to \infty } F(m, n)$ が収束することを示し、その極限値を求めよ。ただし、$0 < s < 1$のとき
$ \displaystyle \lim_{ k \to \infty }k ^ m s ^ k$
であることは用いてよい。
この動画を見る 

一橋大 3次関数の最大値

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#関数の極限#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3-3ax^2+a$,$x\leqq 2$の範囲で$f(x)$の最大値が$105$となるような$a$の値を求めよ.

一橋大過去問
この動画を見る 

#12数検1級1次過去問 極限(マクローリン展開)Σn^2/n!

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#関数と極限#数列の極限#関数の極限#数学検定#数学検定準1級#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\boxed{6}$
$\displaystyle \sum_{n=1}^{\infty}\dfrac{n^2}{n!}$を求めよ.
この動画を見る 
PAGE TOP