【数Ⅲ】【微分とその応用】不等式の応用6 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅲ】【微分とその応用】不等式の応用6 ※問題文は概要欄

問題文全文(内容文):
aは定数とする。次の方程式の異なる実数解の個数を求めよ。

(2)では、必要ならば$\displaystyle \lim_{ x \to \infty } \displaystyle \frac{x}{e^x} =0$を用いてよい。

(1) $x^3-ax+2a$=0
(2) $2x-1=ae^{ -x }$
チャプター:

0:00 問題概要
0:40 (1)解説
3:04 (2)解説

単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
aは定数とする。次の方程式の異なる実数解の個数を求めよ。

(2)では、必要ならば$\displaystyle \lim_{ x \to \infty } \displaystyle \frac{x}{e^x} =0$を用いてよい。

(1) $x^3-ax+2a$=0
(2) $2x-1=ae^{ -x }$
投稿日:2025.01.22

<関連動画>

練習問題45 北海道大学 微分と積分 教員採用試験 数検準1級

アイキャッチ画像
単元: #大学入試過去問(数学)#数学検定・数学甲子園・数学オリンピック等#微分とその応用#積分とその応用#学校別大学入試過去問解説(数学)#その他#数学検定#数学検定準1級#数学(高校生)#北海道大学#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$0 \leqq x \leqq 2\pi$
関数
$f(x)=\displaystyle \int_{0}^{x}e^t\ cos\ t\ dt$の最大値とそのときの$x$の値を求めよ。

出典:北海道大学 教員採用試験
この動画を見る 

福田のおもしろ数学475〜関数方程式の正しい解き方

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$0$以上の実数の集合を$R'$とする。

$R'→R'$の関数$f(x)$が任意の$x,y$に対して

$xy(y)+yf(x)=f(x)f(y)(f(x)+f(y))$

を満たしている。

$f(x)$を求めて下さい。
    
この動画を見る 

あけましておめでとうございます

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
正の実数解を求めよ.
$2^x=x^2$

この動画を見る 

福田の数学〜九州大学2022年理系第4問〜定積分の定義から性質を証明する

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#微分とその応用#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
定積分について述べた次の文章を読んで、後の問いに答えよ。
区間$a \leqq x \leqq b$で連続な関数f(x)に対して$F'(x)=f(x)$となる$F(x)$を1つ選び、
$f(x)$のaからbまでの定積分を
$\int_a^bf(x)dx=F(b)-F(a)         \ldots①$
で定義する。定積分の値はF(x)の選び方によらずに定まる。
定積分は次の性質(A),(B),(C)をもつ。
(A)$\int_a^b\left\{kf(x)+lg(x)\right\}dx=k\int_a^bf(x)dx+l\int_a^bg(x)dx$
(B)$ a \leqq c \leqq b$のとき、$\int_a^cf(x)dx+\int_c^bf(x)dx=\int_a^bf(x)dx$
(C)区間$a \leqq x \leqq b$において$g(x) \geqq h(x)$ならば、$\int_a^bg(x)dx \geqq \int_a^bh(x)dx$
ただし、$f(x),g(x),h(x)$は区間$a \leqq x \leqq b$で連続な関数、$k,l$は定数である。
以下、$f(x)$を区間$0 \leqq x \leqq 1$で連続な増加関数とし、
nを自然数とする。定積分の性質$\boxed{\ \ ア\ \ }$を用い、定数関数に対する定積分の計算を行うと、
$\frac{1}{n}f(\frac{i-1}{n}) \leqq \int_{\frac{i-1}{n}}^{\frac{i}{n}}f(x)dx \leqq \frac{1}{n}f(\frac{i}{n})  (i = 1,2,\ldots,n)     \ldots②$
が成り立つことがわかる。$S_n=\frac{1}{n}\sum_{i=1}^nf(\frac{i-1}{n})$とおくと、
不等式②と定積分の性質$\boxed{\ \ イ\ \ }$より次の不等式が成り立つ。
$0 \leqq \int_0^1f(x)dx-S_n \leqq \frac{f(1)-f(0)}{n}     \ldots③$
よって、はさみうちの原理より$\lim_{n \to \infty}S_n=\int_0^1f(x)dx$が成り立つ。

(1)関数F(x),G(x)が微分可能であるとき、$\left\{F(x)+G(x)\right\}'=F'(x)+G'(x)$が
成り立つことを、導関数の定義に従って示せ。
また、この等式と定積分の定義①を用いて、性質(A)で$k=l=1$とした場合の等式
$\int_a^b\left\{f(x)+g(x)\right\}dx=\int_a^bf(x)dx+\int_a^bg(x)dx$ を示せ。
(2)定積分の定義①と平均値の定理を用いて、次を示せ。
$a \lt b$のとき、区間$a \leqq x \leqq b$において$g(x) \gt 0$ならば、$\int_a^bg(x)dx \gt 0$
(3)(A),(B),(C)のうち、空欄$\boxed{\ \ ア\ \ }$に入る記号として最もふさわしいものを
1つ選び答えよ。また、文章中の下線部の内容を詳しく説明することで、
不等式②を示せ。
(4)(A),(B),(C)のうち、空欄$\boxed{\ \ イ\ \ }$に入る記号として最もふさわしいものを
1つ選び答えよ。また、不等式③を示せ。

2022九州大学理系過去問
この動画を見る 

福田のわかった数学〜高校3年生理系097〜不等式の証明(4)

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 不等式の証明(4)
$(x+2)\log(x+1) \geqq 2x (x \geqq 0)$を証明せよ。
この動画を見る 
PAGE TOP