問題文全文(内容文):
aは定数とする。次の方程式の異なる実数解の個数を求めよ。
(2)では、必要ならば$\displaystyle \lim_{ x \to \infty } \displaystyle \frac{x}{e^x} =0$を用いてよい。
(1) $x^3-ax+2a$=0
(2) $2x-1=ae^{ -x }$
aは定数とする。次の方程式の異なる実数解の個数を求めよ。
(2)では、必要ならば$\displaystyle \lim_{ x \to \infty } \displaystyle \frac{x}{e^x} =0$を用いてよい。
(1) $x^3-ax+2a$=0
(2) $2x-1=ae^{ -x }$
チャプター:
0:00 問題概要
0:40 (1)解説
3:04 (2)解説
単元:
#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学Ⅲ#中高教材#微分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
aは定数とする。次の方程式の異なる実数解の個数を求めよ。
(2)では、必要ならば$\displaystyle \lim_{ x \to \infty } \displaystyle \frac{x}{e^x} =0$を用いてよい。
(1) $x^3-ax+2a$=0
(2) $2x-1=ae^{ -x }$
aは定数とする。次の方程式の異なる実数解の個数を求めよ。
(2)では、必要ならば$\displaystyle \lim_{ x \to \infty } \displaystyle \frac{x}{e^x} =0$を用いてよい。
(1) $x^3-ax+2a$=0
(2) $2x-1=ae^{ -x }$
投稿日:2025.01.22