【高校数学】数Ⅲ-116 関数の極値① - 質問解決D.B.(データベース)

【高校数学】数Ⅲ-116 関数の極値①

問題文全文(内容文):
数Ⅲ(関数の極値①)
Q.次の関数の極値を求めよ

①$f(x)=\frac{x^2+2x+1}{x^2+1}$

➁$f(x)=x^2e^{-x}$

③$f(x)=\frac{\log x}{x^2}$
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(関数の極値①)
Q.次の関数の極値を求めよ

①$f(x)=\frac{x^2+2x+1}{x^2+1}$

➁$f(x)=x^2e^{-x}$

③$f(x)=\frac{\log x}{x^2}$
投稿日:2018.10.28

<関連動画>

微分方程式②【微分方程式の解】(高専数学、数検1級)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#微分とその応用#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\frac{dx}{dt}=x+e^{2t}$
(1)$x=e^{2t}$が解
(2)$x=e^{2t}+ce^t$が一般解
cは任意定数
(3)t=0,x=-1をみたす特殊解を求めよ。
この動画を見る 

【良問】数IIの知識で解けます【山形大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#三角関数#点と直線#円と方程式#加法定理とその応用#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#山形大学#数Ⅲ
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$T=\dfrac{sin\theta cos\theta}{1+sin^2\theta}$とする。
$\theta$が$0<\theta<\dfrac{\pi}{2}$の範囲を動くとき、$T$の最大値を求めよ。

山形大過去問
この動画を見る 

微分方程式⑨【連立微分方程式】(高専数学、数検1級)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
\dfrac{dx}{dt}=4y-\cos t \\
\dfrac{dy}{dt}=-x+\sin t
\end{array}
\right.
\end{eqnarray}$

これを解け.
この動画を見る 

18滋賀県教員採用試験(数学:4番 微分方程式)

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{4}$
$f'(x)$:連続,$f(0)=1$
$g(x)=\displaystyle \int_{0}^{x}(x-t)f'(t)dt$
$f'(x)-1=g'(x)-g''(x)$
をみたす$f(x),g(x)$を求めよ.
この動画を見る 

福田のわかった数学〜高校3年生理系064〜微分(9)定義に従った微分(1)

アイキャッチ画像
単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
定義に従って$f(x)=x^n$を微分せよ.($n$は自然数)
この動画を見る 
PAGE TOP