サッカーボールの頂点の個数は? 共栄学園(東東京) - 質問解決D.B.(データベース)

サッカーボールの頂点の個数は? 共栄学園(東東京)

問題文全文(内容文):
12個の正五角形と20個の正六角形の合わせて32面からなる多面体
どの頂点にも1個の正五角形と2個の正六角形の面が集まっている

この多面体の頂点の個数は?

共栄学園高等学校
単元: #数Ⅱ#点と直線#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
12個の正五角形と20個の正六角形の合わせて32面からなる多面体
どの頂点にも1個の正五角形と2個の正六角形の面が集まっている

この多面体の頂点の個数は?

共栄学園高等学校
投稿日:2023.08.06

<関連動画>

福田の数学〜東京医科歯科大学2022年理系第2問〜放物線に反射する直線の方程式と面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#三角関数#微分法と積分法#点と直線#円と方程式#微分とその応用#積分とその応用#接線と法線・平均値の定理#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#数Ⅲ#東京医科歯科大学
指導講師: 福田次郎
問題文全文(内容文):
$xy$平面上の放物線$P:y^2=4x$上に異なる2点A,Bをとり、A,Bそれぞれに
おいてPへの接線と直交する直線を$n_A,\ n_B$とする。aを正の数として、点Aの座標
を$(a,\ \sqrt{4a})$とするとき、以下の各問いに答えよ。
(1)$\ n_A$の方程式を求めよ。
(2)直線ABと直線$y=\sqrt{4a}$とがなす角の2等分線の一つが、$n_A$に一致する
とき、直線ABの方程式をaを用いて表せ。
(3)(2)のとき、点Bを通る直線$r_B$を考える。$r_B$と直線ABとがなす角の
2等分線の一つが、$n_B$に一致するとき、$r_B$の方程式をaを用いて表せ。
(4)(3)のとき、直線ABと放物線Pで囲まれた図形の面積をS_1とし、Pと直線\\
$y=\sqrt{4a}$、直線$x=-1$および(3)の$r_B$で囲まれた図形の面積を$S_2$とする。
aを変化させたとき、$\frac{S_1}{S_2}$の最大値を求めよ。

2022東京医科歯科大学理系過去問
この動画を見る 

大阪大 点と直線の距離 公式証明

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(x_0,y_0)$と$ax+by+c=0$の距離が$\dfrac{\vert ax_0+by_0+c \vert}{\sqrt{a^2+b^2}}$であることを証明せよ.

大阪大過去問
この動画を見る 

定点の座標を求めよ 高校数学

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
定数kがどんな値を取っても
直線$kx-y+5k=0$が通る
定点の座標を求めよ
この動画を見る 

福田の数学〜神戸大学2022年理系第4問〜双曲線が直線から切り取る弦の中点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上の曲線#図形と方程式#点と直線#軌跡と領域#2次曲線#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
aを正の実数とし、双曲線$\frac{x^2}{4}-\frac{y^2}{4}=1$と直線$y=\sqrt ax+\sqrt a$が異なる2点P,Q
で交わっているとする。線分PQの中点をR(s,t)とする。以下の問いに答えよ。
(1)aの取りうる値の範囲を求めよ。
(2)s,tの値をaを用いて表せ。
(3)aが(1)で求めた範囲を動くときにsのとりうる値の範囲を求めよ。
(4)tの値をsを用いて表せ。

2022神戸大学理系過去問
この動画を見る 

【数Ⅱ】【図形と方程式】内分外分の利用 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
3点$(2,-2),(-1,1),\rm C$を頂点とする三角形が正三角形になるとき、点$\rm C$の座標を求めよ。

3点$(3,5),(2,-2),-(6,2)$から等距離にある点の座標を求めよ。

(1) 4点$\rm A(-2,3),B(5,4),C(-3,1),D$を頂点とする平行四辺形$\rm ABCD$ がある。対角線$\rm AC,BD$の交点及び、頂点$\rm D$の座標を求めよ。
(2) 4点$\rm A(-2,3),B(5,4),C(-3,1),D$を頂点とする平行四辺形について、頂点$\rm D$となりうる点の座標をすべて答えよ。
この動画を見る 
PAGE TOP