階乗!! - 質問解決D.B.(データベース)

階乗!!

問題文全文(内容文):
$7! \times 6! = \boxed ?!$
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 数学を数楽に
問題文全文(内容文):
$7! \times 6! = \boxed ?!$
投稿日:2021.04.05

<関連動画>

一橋大 数学的帰納法 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数学的帰納法#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
2009一橋大学過去問題
$α={}^3\sqrt{7+5\sqrt{2}}$ $\quad$ $β={}^3\sqrt{7-5\sqrt{2}}$
n自然数
$α^n+β^n$は自然数であることを示せ。
この動画を見る 

福田のおもしろ数学538〜数列の一般項を1つの式で表す

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

数列

$1,1,2,2,3,3,4,4,\cdots $

の一般項を$1$つの式で表せ。
    
この動画を見る 

福田の数学〜立教大学2023年理学部第4問〜数学的帰納法とはさみうちの原理

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数学的帰納法#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 正の数列$x_1$,$x_2$,$x_3$,...,$x_n$,... は以下を満たすとする。
$x_1$=8, $x_{n+1}$=$\sqrt{1+x_n}$ ($n$=1,2,3,...)
このとき、次の問いに答えよ。
(1)$x_2$,$x_3$,$x_4$をそれぞれ求めよ。
(2)すべての$n$≧1について($x_{n+1}$-$\alpha$)($x_{n+1}$+$\alpha$)=$x_n$-$\alpha$ となる定数$\alpha$で、
正であるものを求めよ。
(3)$\alpha$を(2)で求めたものとする。すべての$n$≧1について$x_n$>$\alpha$であることを$n$に関する数学的帰納法で示せ。
(4)極限値$\displaystyle\lim_{n \to \infty}x_n$を求めよ。
この動画を見る 

高専数学 微積II #32(1) 級数の和

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: ますただ
問題文全文(内容文):
等比級数
$\displaystyle \sum_{n=1}^{\infty} x^{n-1} (3-4x)^{n-1}$
が収束するように
$x$の範囲を定め和を求めよ.
この動画を見る 

【高校数学】 数B-72 和の記号Σ(シグマ)①

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$\displaystyle \sum_{k=1}^n k=①$

$\displaystyle \sum_{k=1}^n k^2=②$

$\displaystyle \sum_{k=1}^n k^3=③$

$\displaystyle \sum_{k=1}^n C=④\quad \left(\displaystyle \sum_{k=1}^n 3=⑤\right)$

$\displaystyle \sum_{k=1}^n r^k=⑥\quad (r\neq 1)$

$\displaystyle \sum_{k=1}^n r^{k-1}=⑦\quad (r\neq 1)$

次の和を項を書き並べて表そう.

⑧$\displaystyle \sum_{k=1}^5 2^k$

⑨$\displaystyle \sum_{k=3}^{n-1} k^2$


この動画を見る 
PAGE TOP