福田の数学〜東京大学2023年理系第5問〜整式の割り算と2重因子をもつ条件 - 質問解決D.B.(データベース)

福田の数学〜東京大学2023年理系第5問〜整式の割り算と2重因子をもつ条件

問題文全文(内容文):
$\Large\boxed{5}$ 整式f(x)=$(x-1)^2(x-2)$を考える。
(1)g(x)を実数を係数とする整式とし、g(x)をf(x)で割った余りをr(x)とおく。
$g(x)^7$をf(x)で割った余りと$r(x)^7$をf(x)で割った余りが等しいことを示せ。
(2)a,bを実数とし、h(x)=$x^2$+ax+b とおく。$h(x)^7$をf(x)で割った余りを$h_1(x)$とおき、$h_1(x)^7$をf(x)で割った余りを$h_2(x)$とおく。$h_2(x)$がh(x)に等しくなるようなa,bの組を全て求めよ。

2023東京大学理系過去問
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#複素数と方程式#整式の除法・分数式・二項定理#恒等式・等式・不等式の証明#剰余の定理・因数定理・組み立て除法と高次方程式#微分とその応用#微分法#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 整式f(x)=$(x-1)^2(x-2)$を考える。
(1)g(x)を実数を係数とする整式とし、g(x)をf(x)で割った余りをr(x)とおく。
$g(x)^7$をf(x)で割った余りと$r(x)^7$をf(x)で割った余りが等しいことを示せ。
(2)a,bを実数とし、h(x)=$x^2$+ax+b とおく。$h(x)^7$をf(x)で割った余りを$h_1(x)$とおき、$h_1(x)^7$をf(x)で割った余りを$h_2(x)$とおく。$h_2(x)$がh(x)に等しくなるようなa,bの組を全て求めよ。

2023東京大学理系過去問
投稿日:2023.03.10

<関連動画>

福田のおもしろ数学432〜ガウス記号を含んだ式が成り立たない条件

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$n+\left[\dfrac{n}{2}\right] \neq \left[\dfrac{n}{6}\right]+\left[\dfrac{2n}{3}\right]$

を満たす自然数$n$をすべて求めよ。
   
この動画を見る 

琉球大 剰余 二項定理

アイキャッチ画像
単元: #数A#数Ⅱ#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$31^n$を$900$で割った余りが最大になる自然数$n$のうち最小の$n$を求めよ.

1987琉球大過去
この動画を見る 

福田の数学〜早稲田大学2022年教育学部第1問(4)〜無限級数の和と部分分数分解

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{1}}$(4)次の無限級数の和は自然数となる。その自然数を求めよ。
$\sum_{n=6}^{\infty}\frac{1800}{(n-5)(n-4)(n-1)n}$

2022早稲田大学教育学部過去問
この動画を見る 

福田の数学〜大阪大学2022年文系第3問〜6分の1公式の証明と面積の最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#微分法と積分法#恒等式・等式・不等式の証明#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#面積、体積#大阪大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
以下の問いに答えよ。
(1)実数$\alpha,\beta$に対し、

$\int_{\alpha}^{\beta}(x-\alpha)(x-\beta)dx=\frac{(\alpha-\beta)^3}{6}$
が成り立つことを示せ。
(2)a,bを$b \gt a^2$を満たす定数とし、座標平面に点$A(a,b)$をとる。さらに、
点Aを通り、傾きがkの直線をlとし、直線lと放物線$y=x^2$で囲まれた部分の面積を
$S(k)$とする。kが実数全体を動くとき、$S(k)$の最小値を求めよ。

2022大阪大学文系過去問
この動画を見る 

福田のおもしろ数学307〜不等式の証明エレガントに証明しよう

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$a\geqq 1,b\geqq 1$のとき、$\sqrt{a-1}+\sqrt{b-1}\leqq \sqrt{ab}$であることを示して下さい。
この動画を見る 
PAGE TOP