早稲田(政経)対数不等式 - 質問解決D.B.(データベース)

早稲田(政経)対数不等式

問題文全文(内容文):
$a \gt 0,a \neq 1$ 不等式を解け
$log_a(x+2) \geqq log_{a^2}(3x+16)$

出典:2003年早稲田大学 政治経済学部 過去問
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a \gt 0,a \neq 1$ 不等式を解け
$log_a(x+2) \geqq log_{a^2}(3x+16)$

出典:2003年早稲田大学 政治経済学部 過去問
投稿日:2019.11.22

<関連動画>

【数Ⅱ】相加平均・相乗平均の関係を正しく使いこなそう【よくある間違え方とは】

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
$ (1)x \gt 0のとき,x+\dfrac{9}{x}\geqq 6を示せ.
(2)x \gt 0のとき,x+\dfrac{9}{x}の最小値を求めよ.
(3)x \gt 0のとき,x+\dfrac{6}{x+1}の最小値を求めよ.
(4)x \gt 0のとき,\dfrac{x^2;5x+15}{x+2}の最小値を求めよ.
(5)a \gt 0,b \gt 0のとき\left(a+\frac{1}{b} \right)\left(\frac{16}{a}+b \right)の最小値
を求めよ.$

この動画を見る 

福田の数学〜京都大学2025文系第2問〜恒等式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

実数$a,b$についての次の条件(*)を考える。

(*)ある実数係数の$2$次式$f(x)$と、

ある実数$c$に対して、

$x$についての恒等式

$\dfrac{1}{8}x^4+ax^3+bx^2=f(f(x))+c \cdots ①$

が成り立つ。

この条件(*)を満たす点$(a,b)$全体の集合を

座標平面上に図示せよ。

$2025$年京都大学文系過去問題
この動画を見る 

【数Ⅱ】【式と証明】等式の証明1 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$a+b+c=0$のとき、
次の等式が成り立つことを証明せよ。
$a(\dfrac1b+\dfrac1c)+b(\dfrac1c+\dfrac1a)+c(\dfrac1a+\dfrac1b)=-3$
この動画を見る 

福田のおもしろ数学073〜割り切れることを証明しよう

アイキャッチ画像
単元: #数A#数Ⅱ#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
任意の自然数$n$に対して、$11^n$-$8^n$-$3^n$ が24で割り切れることを証明せよ。
この動画を見る 

分数式の計算 千葉工業大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{2}{x} + \frac{x-2}{x^2+x}$を簡単にせよ

千葉工業大学
この動画を見る 
PAGE TOP