【高校数学】 数B-91 漸化式⑤ - 質問解決D.B.(データベース)

【高校数学】 数B-91 漸化式⑤

問題文全文(内容文):
次の条件で定められる数列$\{a_n\}$の一般項を求めよう.

①$a_1=2,\dfrac{1}{a_{n+1}}=\dfrac{1}{a_n}+3^{n-1}$

②$a_1=\dfrac{1}{4},a_{n+1}=\dfrac{a_n}{3a_n+1}$
単元: #数列#漸化式#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の条件で定められる数列$\{a_n\}$の一般項を求めよう.

①$a_1=2,\dfrac{1}{a_{n+1}}=\dfrac{1}{a_n}+3^{n-1}$

②$a_1=\dfrac{1}{4},a_{n+1}=\dfrac{a_n}{3a_n+1}$
投稿日:2016.02.27

<関連動画>

【高校数学】和の記号・シグマの公式の証明 3-8.5【数学B】

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
次式を証明せよ。
$\displaystyle \sum_{i=1}^n k^2=\frac{1}{6}n(n+1)(2n+1)$
$\displaystyle \sum_{i=1}^n k^3=\{ \frac{1}{2}n(n+1)\}^2$
この動画を見る 

大学入試問題#923「帰納法で解いても良いのかな」

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#数学的帰納法#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数B
指導講師: ますただ
問題文全文(内容文):
$a_1=1,$ $a_n \neq 0$
$a_n=3(\sqrt{ S_n }-\sqrt{ S_{n-1} }),2 \leq n$

1.$a_2$を求めよ。
2.$\sqrt{ S_n }$を求めよ。
3.$a_n$を求めよ。

出典:1999年 千葉大学
この動画を見る 

福田の1.5倍速演習〜合格する重要問題066〜九州大学2017年度理系第3問〜等差数列の7の倍数になる項の個数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{3}}$ 初項$a_1=1$, 公差4の等差数列$\left\{a_n\right\}$を考える。以下の問いに答えよ。
(1) $\left\{a_n\right\}$の初項から第600項のうち、7の倍数である項の個数を求めよ。
(2) $\left\{a_n\right\}$の初項から第600項のうち、$7^2$の倍数である項の個数を求めよ。
(3) 初項から第n項までの積$a_1a_2\cdots a_n$が$7^{45}$の倍数となる最小の自然数nを求めよ。

2017九州大学理系過去問
この動画を見る 

【高校数学】数列の和と一般項~理解して覚えようね~ 3-10【数学B】

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
数列の和と一般項の関係について解説しています。
この動画を見る 

【高校数学】 数B-68 等比数列とその和④

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
初項$a$,公比$r$,項数$n$の等比数列の和を$S_n$とすると
$r \neq 1$のとき,$S_n=①=②$
$r=1$のとき,$S_n=③$

次の等比数列の初項から第$n$項までの和と第5項までの和を求めよう.

④$1,3,9,・・・$

⑤$-2,-2,-2,・・・$

⑥$-1,2,-4,・・・$
この動画を見る 
PAGE TOP