【高校数学】和の記号・シグマ~数列の和を丁寧に~ 3-8【数学B】 - 質問解決D.B.(データベース)

【高校数学】和の記号・シグマ~数列の和を丁寧に~ 3-8【数学B】

単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【楽しい授業動画】あきとんとん
投稿日:2022.01.12

<関連動画>

18東京都教員採用試験(数学:場合の数、数列)

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数列#数列とその和(等差・等比・階差・Σ)#その他#数学(高校生)#数B#教員採用試験
指導講師: ますただ
問題文全文(内容文):
1⃣-(2)
平面上の10コの円は、任意の2コの円も異なる2点で交わり、3コの円は1点で交わらないとき交点の総数を求めよ。
この動画を見る 

福田の一夜漬け数学〜数列・群数列(3)〜高校2年生

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
\begin{array}{|c|c|c|c|c}
\hline 1 & 2 & 5 & 10 & \\
\hline 4 & 3 &6 & 11 & \\
\hline 9 & 8 & 7 & 12 & \\
\hline 16 & 15 & 14 & 13 & \\
\hline \\
\end{array}

上図のように自然数を配置していく。
$m$行目、$n$列目にある数を$a(m,n)$と
表すことにする。
例えば、$a(3,2)=8$ である。
次の問いに答えよ。

(1)$a(1,n)$
(2)$a(m,m)$
(3)$a(m,n)$
(4)150は何行目の何列目に出てくるか。
この動画を見る 

福田の数学〜慶應義塾大学2021年看護医療学部第1問(4)〜等比数列となる条件

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ (4)数列$\left\{a_n\right\}$の階差数列を$\left\{b_n\right\}$とする。$\left\{b_n\right\}$が初項2、公比$\frac{1}{3}$の等比数列と
なるとき、$\left\{b_n\right\}$の一般項は$b_n=\boxed{\ \ オ\ \ }$である。また、$\left\{a_n\right\}$も等比数列に
なるならば、$a_1=\boxed{\ \ カ\ \ }$である。このとき$\left\{a_n\right\}$の一般項は$a_n=\boxed{\ \ キ\ \ }$である。

2021慶應義塾大学看護医療学部過去問
この動画を見る 

福田の数学〜早稲田大学2022年理工学部第3問〜漸化式と数列の極限

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{3}}\ r$を実数とする。
次の条件によって定められる数列$\left\{a_n\right\},\left\{b_n\right\},\left\{c_n\right\}$を考える。
$a_1=r,a_{n+1}=\frac{[a_n]}{4}+\frac{a_n}{4}+\frac{5}{6}(n=1,2,3,\ldots)$
$b_1=r,b_{n+1}=\frac{b_n}{2}+\frac{7}{12}(n=1,2,3,\ldots)$
$c_1=r,c_{n+1}=\frac{c_n}{2}+\frac{5}{6}(n=1,2,3,\ldots)$
ただし、$[x]$はxを超えない最大の整数とする。以下の問いに答えよ。
(1)$\lim_{n \to \infty}b_n$と$\lim_{n \to \infty}c_n$を求めよ。
(2)$b_n \leqq a_n \leqq c_n (n=1,2,3,\ldots)$を示せ。
(3)$\lim_{n \to \infty}a_n$を求めよ。

2022早稲田大学理工学部過去問
この動画を見る 

福田の数学〜千葉大学2022年理系第7問〜不定方程式の自然数解と漸化式で与えられた数列

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$x,y$についての方程式
$x^2-6xy+y^2=9  \ldots\ldots(*)$
に関する次の問いに答えよ。
(1)$x,y$がともに正の整数であるような(*)の解のうち、yが最小であるものを
求めよ。
(2)数列$a_1,a_2,a_3,\ldots$が漸化式
$a_{n+2}-6a_{n+1}+a_n=0  (n=1,2,3,\ldots)$
を満たすとする。このとき、$(x,y)=(a_{n+1},a_n)$が(*)を満たすならば、
$(x,y)=(a_{n+2},a_{n+1})$も(*)を満たすことを示せ。
(3)(*)の整数解(x,y)は無数に存在することを示せ。

2022千葉大学理系過去問
この動画を見る 
PAGE TOP