(x³+x²+x+1)⁷をx²-x+1で割ったあまりを求めよ - 質問解決D.B.(データベース)

(x³+x²+x+1)⁷をx²-x+1で割ったあまりを求めよ

問題文全文(内容文):
$(x^3+x^2+x+1)^7$を$x^2-x+1$で割ったあまりを求めよ.
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(x^3+x^2+x+1)^7$を$x^2-x+1$で割ったあまりを求めよ.
投稿日:2022.10.22

<関連動画>

京都大 三次方程式の解

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$k\gt 0$であるとする.
$x(x+3)(x-3)+3k(x+1)(x-1)=0$が3つ実数解をもつことを示せ.

1967京都大(文理共通)過去問
この動画を見る 

京都大 3次方程式 実数解1つである証明 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#微分法と積分法#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)$は3次式、$f(x)$を導関数$f'(x)$で割った余りが定数である。
$f(x)=0$はただ1つの実数解をもつことを示せ

出典:1989年京都大学 過去問
この動画を見る 

【数学】2022年度 第2回 K塾記述高2模試 全問解説(ベクトルはおまけ)、※修正箇所:問1(1)(概要欄へ)

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#数と式#2次関数#場合の数と確率#図形の性質#複素数と方程式#図形と計量#式の計算(整式・展開・因数分解)#一次不等式(不等式・絶対値のある方程式・不等式)#2次方程式と2次不等式#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#確率#図形と方程式#三角関数#複素数#三角関数とグラフ#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 理数個別チャンネル
問題文全文(内容文):
2022年度第2回全統記述高2模試全問解説動画です!
この動画を見る 

4次方程式 展開する?しない?

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$(1+x^2)^2=4x(1-x^2)$
この動画を見る 

4次方程式の解と係数の関係?

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^4+2x^3+3x^2+4x+1=0$の4つの解を
$α,β,γ,δ$とおくとき,
$(α^4-1)(β^4-1)(γ^4-1)(δ^4-1)$の値を求めよ.
この動画を見る 
PAGE TOP