福田の数学〜不等式の図形的な意味に気づけるか〜東京大学2018年文系第1問(2)〜領域内を動く点が不等式を満たす条件 - 質問解決D.B.(データベース)

福田の数学〜不等式の図形的な意味に気づけるか〜東京大学2018年文系第1問(2)〜領域内を動く点が不等式を満たす条件

問題文全文(内容文):
座標平面上に放物線 C を$y=x^2-3x+4$で定め、領域Dを$y \geqq x^2-3x+4$で定める。原点を通る 2 直線l, m は C に接する。
( 2 )次の条件を満たす点 P(p,q)の動きうる範囲を求め、座標平面上に図示せよ。
条件:領域Dのすべての点は(x,y)に対し、不等式$px+qy\leqq 0$が成り立つ。

2018東京大学文過去問
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
座標平面上に放物線 C を$y=x^2-3x+4$で定め、領域Dを$y \geqq x^2-3x+4$で定める。原点を通る 2 直線l, m は C に接する。
( 2 )次の条件を満たす点 P(p,q)の動きうる範囲を求め、座標平面上に図示せよ。
条件:領域Dのすべての点は(x,y)に対し、不等式$px+qy\leqq 0$が成り立つ。

2018東京大学文過去問
投稿日:2024.01.06

<関連動画>

福田のわかった数学〜高校3年生理系024〜極限(24)関数の極限、三角関数の極限(4)

アイキャッチ画像
単元: #数Ⅱ#三角関数#関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 三角関数の極限(4)
次の極限を求めよ。
(1)$\lim_{x \to 0}x\sin\displaystyle \frac{1}{x}$  (2)$\lim_{x \to -\infty}x\sin\displaystyle \frac{1}{x}$
この動画を見る 

福田の一夜漬け数学〜相加平均・相乗平均の関係〜その証明の考察3(受験編)

アイキャッチ画像
単元: #中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#数と式#式と証明#式の計算(整式・展開・因数分解)#一次不等式(不等式・絶対値のある方程式・不等式)#恒等式・等式・不等式の証明#文字と式
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $\displaystyle \frac{a+b+c+d}{4} \geqq \sqrt[4]{abcd}$ を既知として、$\displaystyle \frac{a+b+c}{3} \geqq \sqrt[3]{abc}$ を証明せよ。
ただし、a,b,c,dは全て正の数であるとする。

${\Large\boxed{2}}\ \boxed{1}$を利用して、n個の変数の相加・相乗平均の関係を証明せよ。
つまり、n個の正の数\ a_1,a_2,\cdot,a_nに対して
$\displaystyle \frac{a_1+a_2+\cdots+a_n}{n} \geqq \sqrt[n]{a_1a_2\cdots a_n}$
この動画を見る 

福田のおもしろ数学182〜2x3x5x7x11x13の10乗の桁数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$(2×3×5×7×11×13)^{10}$ の10進法での桁数を求めよ。
この動画を見る 

茨城大 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#複素数と方程式#整数の性質#約数・倍数・整数の割り算と余り・合同式#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
茨城大学過去問題
$n \geqq 2$  整数
(x+1)(x+2)(x+3)・・・(x+n)
(1)$x^{n-1}$の係数
(2)$x^{n-2}$の係数
この動画を見る 

福田の数学〜立教大学2021年理学部第1問(5)〜対数の計算

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ (5)$A=4^{(4^4)},\ B=(4^4)^4$のとき、$\log_2(\log_2A)-\log_2(\log_2B)$の値を
整数で表すと$\boxed{\ \ カ\ \ }$である。

2021立教大学理工学部過去問
この動画を見る 
PAGE TOP