福田の数学〜不等式の図形的な意味に気づけるか〜東京大学2018年文系第1問(2)〜領域内を動く点が不等式を満たす条件 - 質問解決D.B.(データベース)

福田の数学〜不等式の図形的な意味に気づけるか〜東京大学2018年文系第1問(2)〜領域内を動く点が不等式を満たす条件

問題文全文(内容文):
座標平面上に放物線 C を$y=x^2-3x+4$で定め、領域Dを$y \geqq x^2-3x+4$で定める。原点を通る 2 直線l, m は C に接する。
( 2 )次の条件を満たす点 P(p,q)の動きうる範囲を求め、座標平面上に図示せよ。
条件:領域Dのすべての点は(x,y)に対し、不等式$px+qy\leqq 0$が成り立つ。

2018東京大学文過去問
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
座標平面上に放物線 C を$y=x^2-3x+4$で定め、領域Dを$y \geqq x^2-3x+4$で定める。原点を通る 2 直線l, m は C に接する。
( 2 )次の条件を満たす点 P(p,q)の動きうる範囲を求め、座標平面上に図示せよ。
条件:領域Dのすべての点は(x,y)に対し、不等式$px+qy\leqq 0$が成り立つ。

2018東京大学文過去問
投稿日:2024.01.06

<関連動画>

慶応義塾大 極限値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \displaystyle \frac{1}{n^{\displaystyle \frac{3}{2}}}\displaystyle \sum_{k=1}^n k^{\displaystyle \frac{1}{2}}$

出典:慶應義塾大学 過去問
この動画を見る 

【別解あり】2023年京大の三角関数!円に内接する多角形は頻出です【京都大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
(1)$\cos 2θと\cos 3θを\cos θ$の式として表せ。

(2)半径1の円に内接する正五角形の一辺の長さが1.15より大きいか否かを理由をつけて判定せよ。

京都大過去問
この動画を見る 

大学入試問題#892「数学はやっぱ根性」 #京都工芸繊維大学(2023)

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$0 \leq \theta \leq \displaystyle \frac{\pi}{4}$とする
$f(\theta)=\displaystyle \int_{0}^{\frac{\pi}{4}} \displaystyle \frac{|\sin\theta-\sin x|}{\cos^2x} dx$

出典:2023年京都工芸繊維大学
この動画を見る 

東北大 三次関数と放物線の共有点の数 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
東北大学過去問題
$y=x^2+k$と$y=|x(x^2-1)|$との共有点の個数
この動画を見る 

福田のおもしろ数学140〜不等式の証明とRavi変換

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#式と証明#恒等式・等式・不等式の証明#数学オリンピック#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$a$, $b$, $c$が三角形の3辺の長さのとき次の不等式を証明せよ。
$a^2(b+c-a)$+$b^2(c+a-b)$+$c^2(a+b-c)$≦$3abc$
この動画を見る 
PAGE TOP