大学入試問題#340「とりあえず絶対値はずそ」 日本大学医学部(2010) #定積分 - 質問解決D.B.(データベース)

大学入試問題#340「とりあえず絶対値はずそ」 日本大学医学部(2010) #定積分

問題文全文(内容文):
$\displaystyle \int_{\frac{\pi}{6}}^{\frac{4}{3}\pi} |\sqrt{ 3 }\cos\ x-\sin\ x| dx$

出典:2010年日本大学医学部 入試問題
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#日本大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\frac{\pi}{6}}^{\frac{4}{3}\pi} |\sqrt{ 3 }\cos\ x-\sin\ x| dx$

出典:2010年日本大学医学部 入試問題
投稿日:2022.10.18

<関連動画>

大学入試問題#361「作成時間がありませんでした。」 横浜国立大学(2014) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{e}\displaystyle \frac{log\ x}{x^2}dx$

出典:2014年横浜国立大学 入試問題
この動画を見る 

福田の数学〜名古屋大学2022年理系第4問〜定積分の極限と方程式の解

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#関数の極限#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
関数f(x)は区間$x \geqq 0$において連続な増加関数で$f(0)=1$を満たすとする。
ただしf(x)が区間$x \geqq 0$における増加関数であるとは、区間内の任意の実数$x_1,x_2$に対し
$x_1 \lt x_2$ならば$f(x_1) \lt f(x_2)$が成り立つ時をいう。以下、nは正の整数とする。
(1)$\lim_{n \to \infty}\int_0^{2-\frac{1}{n}}\frac{f(x)}{2-x}dx=\infty$ を示せ。
(2)区間$y \gt 2$ において関数$F_n(y)$を$F_n(y)=\int_{2+\frac{1}{n}}^y\frac{f(x)}{2-x}dx$と定めるとき、

$\lim_{y \to \infty}F_n(y)=\infty$を示せ。また$2+\frac{1}{n}$より大きい実数$a_n$で

$\int_0^{2-\frac{1}{n}}\frac{f(x)}{2-x}dx+\int_{{2+\frac{1}{n}}}^{a_n}\frac{f(x)}{2-x}dx=0$

を満たすものがただ1つ存在することを示せ。
(3)(2)の$a_n$について、不等式$a_n \lt 4$がすべてのnに対して成り立つことを示せ。

2022名古屋大学理系過去問
この動画を見る 

【高校数学】福島大学の積分の問題をその場で解説しながら解いてみた!毎日積分98日目~47都道府県制覇への道~【㊶福島】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#福島大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【福島大学 2023】
$a,p$を実数とする。曲線$C:y=2log_e x$が直線$l:y=ax$と点$P(p,ap)$で接している。このとき、以下の問いに答えなさい。
(1) 実数$p,a$の値を求めなさい。
(2) 曲線$C$と直線$x=p,y=0$で囲まれた図形の面積$S$を求めなさい。
(3) 関数$y=x(log_e x)^2$を$x$について微分しなさい。
(4) 曲線$C$と直線$l,y=0$で囲まれた図形を$x$軸のまわりに1回転してできる立体の体積$V$を求めなさい。
この動画を見る 

#茨城大学(2020) #定積分 #Shorts

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#茨城大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} \displaystyle \frac{3x^3+4x}{x^2+1} dx$

出典:2020年茨城大学
この動画を見る 

大学入試問題#921「癖がない綺麗な神問題」

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$a \gt 1$
$I(a)=\displaystyle \int_{0}^{ \pi }\displaystyle \frac{a\sin\theta}{(a^2-2a \cos\theta+1)^{\frac{3}{2}}}d\theta$

1.$I(a)$を求めよ。
2.$\displaystyle \sum_{n=2}^{\infty} I(n)$の値を求めよ。

出典:1997年千葉大学
この動画を見る 
PAGE TOP