福田の数学〜明治大学2022年全学部統一入試理系第1問(1)〜面積計算 - 質問解決D.B.(データベース)

福田の数学〜明治大学2022年全学部統一入試理系第1問(1)〜面積計算

問題文全文(内容文):
(1)曲線$y=1+\sin^2 x$と$x$軸、$y$軸、
および直線$x=\pi$で囲まれた図形の面積は
$\frac{\boxed{ア}}{\boxed{イ}}\ \pi$となる。

2022明治大学全統理系過去問
単元: #大学入試過去問(数学)#積分とその応用#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
(1)曲線$y=1+\sin^2 x$と$x$軸、$y$軸、
および直線$x=\pi$で囲まれた図形の面積は
$\frac{\boxed{ア}}{\boxed{イ}}\ \pi$となる。

2022明治大学全統理系過去問
投稿日:2022.08.30

<関連動画>

大学入試問題#208 信州大学(2021) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-\pi}^{\pi}\displaystyle \frac{\sin^2x}{1+e^{-x}}\ dx$を計算せよ。

出典:2021年信州大学 入試問題
この動画を見る 

【高校数学】富山大学2023年の積分の問題をその場で解説しながら解いてみた!毎日積分86日目~47都道府県制覇への道~【㉙富山】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#数学(高校生)#富山大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【富山大学 2023】
(1) $\displaystyle t=tan\frac{x}{2} (-π<x<π)$とおく。
この時、$\displaystyle sinx=\frac{2t}{1+t^2}, cosx=\frac{1-t^2}{1+t^2}, \frac{dx}{dt}=\frac{2}{1+t^2}$であることを示せ。
(2) 定積分$\displaystyle \int_0^{\frac{π}{2}}\frac{dx}{1+sinx+cosx}$を求めよ。
(3) 2つの定積分$\displaystyle \int_0^{\frac{π}{2}}\frac{1+2sinx}{1+sinx+cosx}dx, \int_0^{\frac{π}{2}}\frac{1+2cosx}{1+sinx+cosx}dx$が等しいことを示せ。
(4) 定積分$\displaystyle \int_0^{\frac{π}{2}}\frac{1+2sinx}{1+sinx+cosx}dx$を求めよ。
(5) 定積分$\displaystyle \int_0^{\frac{π}{2}}\frac{sinx}{1+sinx+cosx}dx$を求めよ。
この動画を見る 

大学入試問題#504「ひたすら積分」 #京都工芸繊維大学 (2012) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$a \gt 0$
$\displaystyle \frac{\displaystyle \int_{1}^{e} log(ax) dx}{\displaystyle \int_{1}^{e} x\ dx}=\displaystyle \int_{1}^{e}\displaystyle \frac{ log(ax)}{x} dx$を満たすとき
$log\ a$の値を求めよ。

出典:2012年京都工芸繊維大学 入試問題
この動画を見る 

#前橋工科大学2017#定積分_16#元高校教員

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{2\pi} t\sin^2t$ $dt$

出典:2017年前橋工科大学
この動画を見る 

大学入試問題#351「積分できて満足できない問題」 電気通信大学(2013) #定積分 #極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#関数の極限#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#電気通信大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \displaystyle \frac{1}{n}\displaystyle \int_{-n}^{n} (\displaystyle \frac{e^x}{e^x+e^{-x}})^2 dx$

出典:2013年電気通信大学 入試問題
この動画を見る 
PAGE TOP