福田の一夜漬け数学〜図形と方程式〜軌跡(1)軌跡の鉄則、高校2年生 - 質問解決D.B.(データベース)

福田の一夜漬け数学〜図形と方程式〜軌跡(1)軌跡の鉄則、高校2年生

問題文全文(内容文):
${\Large\boxed{1}}$ 放物線$y=x^2-2(a+1)x+2a$ $\cdots$①の頂点を$P$とする。$a$が$1$より大きい
実数を動くとき、点Pの軌跡を求めよ。
単元: #数Ⅰ#数Ⅱ#2次関数#2次関数とグラフ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 放物線$y=x^2-2(a+1)x+2a$ $\cdots$①の頂点を$P$とする。$a$が$1$より大きい
実数を動くとき、点Pの軌跡を求めよ。
投稿日:2018.08.11

<関連動画>

無限に続く3乗根

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$3\sqrt{2\sqrt[3]{2\sqrt[3]{2\sqrt[3]{2\sqrt[3]{2・・・・・・}}}}}$
$(a)2$
$(b)\sqrt2$
$(c)\sqrt[3]{4}$
これを解け.
この動画を見る 

共通テスト第2日程2021年数学詳しい解説〜共通テスト第2日程2021年IA第5問〜図形の性質

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large第5問}$
点$Z$を端点とする半直線$ZX$と半直線$ZY$があり、$0° \lt \angle XZY \lt 90°$とする。
また、$0° \lt \angle SZX \lt \angle XZY$かつ$0° \lt \angle SZY \lt \angle XZY$を満たす点$S$をとる。
点$S$を通り、半直線$ZX$と半直線$ZY$の両方に接する円を作図したい。
円$O$を、次の$(Step\ 1)~(Step\ 5)$の手順で作図する。

手順
$(Step\ 1) \angle XZY$の二等分線$l$上に点$C$をとり、下図(※動画参照)のように半直線$ZX$
と半直線$ZY$の両方に接する円$C$を作図する。また、円$C$と半直線$ZX$との接点を$D,$
半直線$ZY$との接点を$E$とする。
$(Step\ 2)$ 円Cと直線$ZS$との交点の一つを$G$とする。
$(Step\ 3)$ 半直線$ZX$上に点$H$を$DG//HS$を満たすようにとる。
$(Step\ 4)$ 点$H$を通り、半直線$ZX$に垂直な直線を引き、$l$との交点を$O$とする。
$(Step\ 5)$ 点$O$を中心とする半径$OH$の円$O$をかく。

(1)$(Step\ 1)~(Step\ 5)$の手順で作図した円$O$が求める円であることは、次の構想に
基づいて下のように説明できる。

構想:円$O$が点$S$を通り、半直線$ZX$と半直線$ZY$の両方に接する円であることを
示すには、$OH=\boxed{\boxed{\ \ ア\ \ }}$が成り立つことを示せばよい。

作図の手順より、$\triangle ZDG$と$\triangle ZHS$との関係、および$\triangle ZDC$と$\triangle ZHO$との
関係に着目すると
$DG:\boxed{\boxed{\ \ イ\ \ }}=\boxed{\boxed{\ \ ウ\ \ }}:\boxed{\boxed{\ \ エ\ \ }}$
$DC:\boxed{\boxed{\ \ オ\ \ }}=\boxed{\boxed{\ \ ウ\ \ }}:\boxed{\boxed{\ \ エ\ \ }}$

であるから、$DG:\boxed{\boxed{\ \ イ\ \ }}=DC:\boxed{\boxed{\ \ オ\ \ }}$となる。
ここで、3点$S,O,H$が一直線上にある場合は、$\angle CDG=\angle \boxed{\boxed{\ \ カ\ \ }}$で
あるので、$\triangle CDG$と$\triangle \boxed{\boxed{\ \ カ\ \ }}$との関係に着目すると、$CD=CG$より
$OH=\boxed{\boxed{\ \ ア\ \ }}$であることがわかる。
なお、3点$S,O,H$が一直線上にある場合は、$DG=\boxed{\ \ キ\ \ }DC$となり、
$DG:\boxed{\boxed{\ \ イ\ \ }}=DC:\boxed{\boxed{\ \ オ\ \ }}$より$OH=\boxed{\boxed{\ \ ア\ \ }}$である
ことがわかる。

$\boxed{\boxed{\ \ ア\ \ }}~\boxed{\boxed{\ \ オ\ \ }}$の解答群(同じものを繰り返し選んでもよい。)
⓪$DH$ ①$HO$ ②$HS$ ③$OD$ ④$OG$
⑤$OS$ ⑥$ZD$ ⑦$ZH$ ⑧$ZO$ ⑨$ZS$

$\boxed{\boxed{\ \ カ\ \ }}$の解答群
⓪$OHD$ ①$OHG$ ②$OHS$ ③$ZDS$
④$ZHG$ ⑤$ZHS$ ⑥$ZOS$ ⑦$ZCG$


(2)点$S$を通り、半直線$ZX$と半直線$ZY$の両方に接する円は二つ作図できる。
特に、点$S$が$\angle XZY$の二等分線$l$上にある場合を考える。半径が大きい方の
円の中心を$O_1$とし、半径が小さい方の円の中心を$O_2$とする。また、円$O_2$と
半直線$ZY$が接する点を$I$とする。円$O_1$と半直線$ZY$が接する点を$J$とし、円$O_1$と
半直線$ZX$が接する点を$K$とする。
作図をした結果、円$O_1$の半径は$5$, 円$O_2$の半径は3であったとする。このとき、
$IJ=\boxed{\ \ ク\ \ }\sqrt{\boxed{\ \ ケコ\ \ }}$である。さらに、円$O_1$と円$O_2$の接点$S$に
おける共通接線と半直線$ZY$との交点を$L$とし、
直線$LK$と円$O_1$との交点で点$K$とは異なる点を$M$とすると

$LM・LK=\boxed{\ \ サシ\ \ }$

である。
また、$ZI=\boxed{\ \ ス\ \ }\sqrt{\boxed{\ \ セソ\ \ }}$であるので、直線$LK$と直線$l$との交点を$N$とすると

$\displaystyle \frac{LN}{NK}=\displaystyle \frac{\boxed{\ \ タ\ \ }}{\boxed{\ \ チ\ \ }}, SN=\displaystyle \frac{\boxed{\ \ ツ\ \ }}{\boxed{\ \ テ\ \ }}$

である。

2021共通テスト過去問
この動画を見る 

絶対値

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{a}{|a|} - \frac{|b|}{b} =?$
この動画を見る 

東大 数学 Mathematics Japanese university entrance exam Tokyo University

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#数列#数学的帰納法#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b$実数
$a^2+b^2=16$
$a^3+b^3=44$

(1)
$a+b$の値は?

(2)
$a^n+b^n(n \geqq 2,$自然数$)$が4の倍数であることを示せ

出典:1997年東京大学 過去問
この動画を見る 

【短時間でマスター!!】入試、模試や定期テストでとてもよく出る三角比の対称式を解説!(sin,cos,tanの求め方)〔現役講師解説、数学〕

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
数学1A
三角比の対称式
$0^{ \circ } \leqq \theta \leqq 180^{ \circ } ,\sin \theta + \cos \theta = \frac {2}{3}$
①$\sin \theta \cos \theta$
②$\sin^3 \theta + \cos^3 \theta$
この動画を見る 
PAGE TOP