整数問題 - 質問解決D.B.(データベース)

整数問題

問題文全文(内容文):
$m,n,X$は自然数である.これを解け.
$2^m+3^n=X^2$
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$m,n,X$は自然数である.これを解け.
$2^m+3^n=X^2$
投稿日:2020.07.13

<関連動画>

合同式の基本

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
m,nを自然数とする.
$ n^2-m!=2001 $を満たす(m,n)をすべて求めよ.
この動画を見る 

1の三乗根 ω

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
1の3乗根のうち虚数であるものの1つをωとすると
$ω^4+ω^3 + 3ω^2 + 2ω +1 =?$
名城大学
この動画を見る 

福田のおもしろ数学296〜フェルマーの最終定理とは何か。与えられた不等式を満たす数列の1との大小関係

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
0以上の整数$a, b, c$が$a+b+c=300, a^2b+a^2c+b^2a+b^2c+c^2a+c^2b=6,000,000$を満たしている。そのような$(a, b, c)$の組の個数を求めよ。
この動画を見る 

高校入試の整数問題 神村学園(鹿児島)

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$6<n(n+1)(n+2)<300$を満たす自然数nの個数を求めよ。

神村学園
この動画を見る 

ただの分数式だけど

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
a,bは正の整数である.
$\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{3}{2018}$を満たす(a,b)を全て求めよ.ただし1009は素数とする.
この動画を見る 
PAGE TOP