整数問題 - 質問解決D.B.(データベース)

整数問題

問題文全文(内容文):
$m,n,X$は自然数である.これを解け.
$2^m+3^n=X^2$
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$m,n,X$は自然数である.これを解け.
$2^m+3^n=X^2$
投稿日:2020.07.13

<関連動画>

難関高校の整数問題の定番です 城北

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
6を加えても6を引いても平方数となる自然数aを求めよ。

城北高等学校
この動画を見る 

福田の1.5倍速演習〜合格する重要問題028〜九州大学2016年度文理共通問題〜余りと合同式

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#茨城大学
指導講師: 福田次郎
問題文全文(内容文):
自然数nに対して、$10^n$を13で割った余りを$a_n$とおく。$a_n$は0から12まで
の整数である。以下の問いに答えよ。
(1)$a_{n+1}$は$10a_n$を13で割った余りに等しいことを示せ。
(2)$a_1,a_2,a_3,\cdots,a_6$を求めよ。
(3)以下の3条件を満たす自然数Nをすべて求めよ。
$(\textrm{i})N$を十進法で表示した時6桁となる。
$(\textrm{ii})N$を十進法で表示して、最初と最後の桁の数字を取り除くと
2016となる。
$(\textrm{iii})N$は13で割り切れる。

2016九州大学文理過去問
この動画を見る 

北海道大 整数

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x,y$を自然数とする.

(1)$\dfrac{3x}{x^2+2}$が自然数となる$x$を求めよ.
(2)$\dfrac{3x}{x^2+2}+\dfrac{1}{y}$が自然数となる$(x,y)$を求めよ.

2016北海道大過去問
この動画を見る 

京都大 整数

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b$は自然数であり,$d,p$は素数である.
$a^p-b^p=d$ならば$d$を$2p$で割った余りは1であることを示せ.

1995京都大過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題089〜東京工業大学2018年度理系第2問〜3変数の不定方程式の整数解

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 次の問いに答えよ。
(1)35x+91y+65z=3 を満たす整数の組(x,y,z)を一組求めよ。
(2)35x+91y+65z=3 を満たす整数の組(x,y,z)の中で$x^2+y^2$の値が最小となるもの、およびその最小値を求めよ。

2018東京工業大学理系過去問
この動画を見る 
PAGE TOP