福田のわかった数学〜高校3年生理系098〜不等式の証明(5) - 質問解決D.B.(データベース)

福田のわかった数学〜高校3年生理系098〜不等式の証明(5)

問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 不等式の証明(5)\\
b(\log a-\log b) \leqq a-b (a \gt 0, b \gt 0)を証明せよ。
\end{eqnarray}
単元: #微分とその応用#微分法#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 不等式の証明(5)\\
b(\log a-\log b) \leqq a-b (a \gt 0, b \gt 0)を証明せよ。
\end{eqnarray}
投稿日:2021.11.25

<関連動画>

福田の数学〜杏林大学2022年医学部第2問〜定積分と関数の増減

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{2}}(1)Cを積分定数として、指数関数とたんっ公式の席の不定積分について、次式が成り立つ。\\
\int xe^{-3x}dx = -(\frac{\boxed{\ \ ア\ \ }\ x+\boxed{\ \ イ\ \ }}{\boxed{\ \ ウ\ \ }})\ e^{-3x}+C\\
\int x^2e^{-3x}dx = -(\frac{\boxed{\ \ エ\ \ }\ x^2+\boxed{\ \ オ\ \ }\ x+\boxed{\ \ カ\ \ }}{\boxed{\ \ キク\ \ }})\ e^{-3x}+C\\
また、定積分について、\\
\int_0^1|(9x^2-1)e^{-3x}|dx=\frac{1}{\boxed{\ \ ケ\ \ }}(-1+\boxed{\ \ コ\ \ }\ e^{\boxed{\ \ サシ\ \ }}-\boxed{\ \ スセ\ \ }\ e^{-3})\\
が成り立つ。\\
\\
(2)p,q,rを実数の定数とする。関数f(x)=(px^2+qx+r)e^{-3x}がx=0で極大、\\
x=1で極小となるための必要十分条件は\\
p=\boxed{\ \ ソタ\ \ }\ r,\ \ \ q=\boxed{\ \ チ\ \ }\ r,\ \ \ \boxed{\ \ ツ\ \ }\\
である。さらに、f(x)の極小値が-1であるとすると、f(x)の極大値は\frac{e^{\boxed{\ \ テ\ \ }}}{\boxed{\ \ ト\ \ }}となる。\\
このとき、\int_0^1f(x)dx=\frac{\boxed{\ \ ナ\ \ }}{\boxed{\ \ 二\ \ }}である。\\
\\
\\
\boxed{\ \ ツ\ \ }の解答群\\
①\ r\gt 0\ \ \ \ ②\ r=0\ \ \ \ ③\ r \lt 0\ \ \ \ ④\ r \gt 1\ \ \ \ ⑤\ r=1\ \ \ \ \\
⑥\ r \lt 1\ \ \ \ ⑦\ r \gt \frac{1}{3}\ \ \ \ ⑧\ r =\frac{1}{3}\ \ \ \ ⑨r \lt \frac{1}{3}\ \ \ \
\end{eqnarray}
この動画を見る 

福田の数学〜明治大学2021年全学部統一入試Ⅲ第4問〜極方程式と曲線で囲まれた面積

アイキャッチ画像
単元: #平面上の曲線#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#面積・体積・長さ・速度#媒介変数表示と極座標#大学入試解答速報#数学#明治大学#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}} 座標平面の原点Oを極、x軸の正の部分を始線とする極座標(r,\ \theta)を考える。\\
k \gt 0として、極方程式\\
r(\sqrt{\cos\theta}+\sqrt{\sin\theta})^2=k  (0 \leqq \theta \leqq \frac{\pi}{2})\\
で表される曲線をC(k)とする。曲線C(k)上の点を直交座標(x,\ y)で表せばxの\\
とりうる値の範囲は、\boxed{\ \ ア\ \ } \leqq x \leqq \boxed{\ \ イ\ \ }\ である。\\
曲線C(k)とx軸、y軸で囲まれた図形の面積をS(k)とおけば、S(k)=\boxed{\ \ ウ\ \ }\ \\
でなる。直交座標が(\frac{k}{4},\ \frac{k}{4})である曲線\ C(k)上の点Aにおける曲線C(k)の接線l\\
の方程式は、y=\boxed{\ \ エ\ \ }となる。曲線\ C(k)と直線l、およびx軸で囲まれた\\
図形の面積をT(k)とおけば、S(k)=\boxed{\ \ オ\ \ }\ T(k)が成り立つ。0 \lt m \lt nを\\
満たす実数m,nに対して、S(n)-S(m)がT(n)と等しくなるのは、\\
\\
\frac{m^2}{n^2}=\frac{\boxed{\ \ カ\ \ }}{\boxed{\ \ キ \ \ }}\ のときである。\\
\\
\boxed{\ \ イ\ \ }\ 、\boxed{\ \ ウ\ \ }の解答群\\
⓪\sqrt k  ①k  ②k^2  ③\frac{\sqrt 2}{2}  ④\frac{\sqrt 2}{3}  \\
⑤\frac{k}{2}  ⑥\frac{k}{3}  ⑦\frac{k^2}{4}  ⑧\frac{k^2}{5}  ⑨\frac{k^2}{6}  \\
\\
\boxed{\ \ エ\ \ }\ の解答群\\
⓪x+\frac{k}{2}  ①x+\frac{k}{4}  ②-x+\frac{k}{2}  ③-x+\frac{k}{4}  ④2x-\frac{k}{2}  \\
⑤2x-\frac{k}{4}  ⑥2x-\frac{3k}{4}  ⑦-2x+\frac{k}{2}  ⑧-2x+\frac{k}{4}  ⑨-2x+\frac{3k}{4}  
\end{eqnarray}
この動画を見る 

弘前大(医)3次方程式 極限 Japanese university entrance exam questions

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#関数の極限#微分法#数学(高校生)#弘前大学#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
弘前大学過去問題
n自然数
$x^3+3nx^2-(3n+2)=0$
(1)全ての自然数nについて正の解をただ1つしかもたないことを示せ。
(2)各自然数nに対して正の解を$a_n$とする。
 $\displaystyle\lim_{n \to \infty}a_n$を求めよ。
この動画を見る 

【数Ⅲ】微分法の応用:接線と法線 媒介変数θで表された曲線について、( )内のθの値に対応する点における接線の方程式を求めよう。x=sinθ, y=sin2θ (θ=2π/3)

アイキャッチ画像
単元: #微分とその応用#接線と法線・平均値の定理#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
媒介変数θで表された曲線について、( )内のθの値に対応する点における接線の方程式を求めよう。
x=sinθ, y=sin2θ (θ=2π/3)
この動画を見る 

福田の数学〜明治大学2021年全学部統一入試Ⅲ第1問〜関数の増減と面積

アイキャッチ画像
単元: #微分とその応用#積分とその応用#微分法#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#数学(高校生)#大学入試解答速報#数学#明治大学#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} 関数f(x)=\frac{1}{2}(x+\sqrt{2-3x^2}) の定義域は-\frac{\sqrt{\boxed{\ \ ア\ \ }}}{\boxed{\ \ イ\ \ }} \leqq x \leqq \frac{\sqrt{\boxed{\ \ ウ\ \ }}}{\boxed{\ \ エ\ \ }}であり、\\
f(x)はx=\frac{\sqrt{\boxed{\ \ オ\ \ }}}{\boxed{\ \ カ\ \ }}のとき、最大値\frac{\sqrt{\boxed{\ \ キ\ \ }}}{\boxed{\ \ ク\ \ }}をとる。曲線y=f(x)、\\
\\
直線y=2xおよびy軸で囲まれた図形の面積は\boxed{\ \ ケ\ \ }となる。\\
\\
\\
\boxed{\ \ ケ\ \ }の解答群\\
⓪\frac{\sqrt3}{18}\pi  ①\frac{\sqrt3}{36}\pi  ②\frac{\sqrt3}{72}\pi  ③\frac{1}{6}+\frac{\sqrt3}{36}\pi  ④\frac{1}{24}+\frac{\sqrt3}{36}\pi\\
⑤\frac{5}{24}+\frac{\sqrt3}{36}\pi  ⑥\frac{1}{3}+\frac{\sqrt3}{18}\pi  ⑦\frac{1}{6}+\frac{\sqrt3}{18}\pi  ⑧\frac{1}{8}+\frac{\sqrt3}{18}\pi  ⑨\frac{7}{24}+\frac{\sqrt3}{18}\pi
\end{eqnarray}
この動画を見る 
PAGE TOP