福田の数学〜京都大学2025文系第3問〜確率漸化式 - 質問解決D.B.(データベース)

福田の数学〜京都大学2025文系第3問〜確率漸化式

問題文全文(内容文):

$\boxed{3}$

$n$は正の整数とする。

$1$枚の硬貨を投げ、

表が出たら$1$、裏が出たら$2$と記録する。

この試行を$n$回繰り返し、

記録された順に数字を左から

並べて$n$桁の数$X$を作る。

ただし、数の表し方は十進法とする。

このとき、$X$が$6$で割り切れる確率を求めよ。

$2025$年京都大学文系過去問題
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{3}$

$n$は正の整数とする。

$1$枚の硬貨を投げ、

表が出たら$1$、裏が出たら$2$と記録する。

この試行を$n$回繰り返し、

記録された順に数字を左から

並べて$n$桁の数$X$を作る。

ただし、数の表し方は十進法とする。

このとき、$X$が$6$で割り切れる確率を求めよ。

$2025$年京都大学文系過去問題
投稿日:2025.03.18

<関連動画>

Σ

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 数学を数楽に
問題文全文(内容文):
$\displaystyle \sum_{k=1}^n k^2 = \frac{1}{6}n(n+1)(2n+1)$
この動画を見る 

福田の数学〜早稲田大学2024年理工学部第2問〜重複順列と連立漸化式

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ $n$を自然数とし、数1, 2, 4を重複を許して$n$個並べてできる$n$桁の自然数全体を考える。そのうちで3の倍数となるものの個数を$a_n$、3で割ると1余るものの個数を$b_n$、3で割ると2余るものの個数を$c_n$とする。
(1)$a_{n+1}$を$b_n$, $c_n$を用いて表せ。同様に$b_{n+1}$を$a_n$, $c_n$を用いて、$c_{n+1}$を$a_n$, $b_n$を用いて表せ。
(2)$a_{n+2}$を$n$と$c_n$を用いて表せ。
(3)$a_{n+6}$を$n$と$a_n$を用いて表せ。
(4)$a_{6m+1} (m=0,1,2,...)$を$m$を用いて表せ。
この動画を見る 

三項間漸化式(応用)高知大

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=18,a_2=48$である.
$a_{n+2}-5a_{n+1}+6a_n=2n^2$,一般項$a_n$を求めよ.

高知大過去問
この動画を見る 

三乗根と漸化式(類)一橋:順天堂(医)

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$は自然数とする.
$\alpha=\sqrt[3]{9+4\sqrt5},\beta=\sqrt[3]{9-4\sqrt5}$
$a_n=\alpha^{2n-1}+\beta^{2n-1}$である.
$a_{n+4}-a_n$が7の倍数であることを示せ.

一橋:順天堂(医)過去問
この動画を見る 

【高校数学】 数B-97 数学的帰納法③

アイキャッチ画像
単元: #数列#数学的帰納法#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$n$を自然数とするとき,
$3^{n+2} \gt 10n+12$を数学的帰納法によって証明しよう.
この動画を見る 
PAGE TOP