2020年東大 ヨビノりたくみさん解説 - 質問解決D.B.(データベース)

2020年東大 ヨビノりたくみさん解説

問題文全文(内容文):
$a \gt 0,b \gt 0$
$C:y=x^3-3ax^2+b$

条件1 $C$は$x$軸に接する
条件2 $x$軸と$C$で囲まれた領域(除く境界)に格子点1つのみ

$b$を$a$で表せ
$a$の範囲を求めよ

出典:2020年東京大学 過去問
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a \gt 0,b \gt 0$
$C:y=x^3-3ax^2+b$

条件1 $C$は$x$軸に接する
条件2 $x$軸と$C$で囲まれた領域(除く境界)に格子点1つのみ

$b$を$a$で表せ
$a$の範囲を求めよ

出典:2020年東京大学 過去問
投稿日:2020.03.01

<関連動画>

福田の数学〜早稲田大学2025商学部第1問(3)〜定積分で表された関数方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(3)$m,n$を正の整数とする。

$n$次関数$f(x)$が次の等式を満たしているとき、

$f(x)=\boxed{ウ}$である。

$\displaystyle \int_{0}^{x} {f(t)}^{m-1} dt=(2x)^m f(x)$ 

$2025$年早稲田大学商学部過去問題
この動画を見る 

大学入試問題#822「これ、積分で出題されるんやー」 #筑波大学(2022) #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#筑波大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int log(x+\sqrt{ x^2+1 }) dx$

出典:2022年筑波大学
この動画を見る 

大学入試問題#254 神戸大学2012 #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#積分とその応用#定積分#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$2 \leqq n$自然数
$\displaystyle \int_{n}^{n^3}\displaystyle \frac{dx}{x\ log\ x}$を計算せよ。

出典:2012年神戸大学 入試問題
この動画を見る 

連立方程式

アイキャッチ画像
単元: #連立方程式#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x,y,z$は実数とする.これを解け.

これを解け.

$\begin{eqnarray}
\left\{
\begin{array}{l}
xy+x+y=1 \\
x^2y^2+x^2+y^2=31
\end{array}
\right.
\end{eqnarray}$
この動画を見る 

【数Ⅱ】微分法と積分法「面積、体積」絶対値の定積分PRIMEⅡ 551

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
教材: #PRIME数学#PRIME数学Ⅱ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の定積分を求めよ。

(1) $\int_0^3 |x-1|dx$

(2) $\int_0^4 |x^2-3x|dx$
この動画を見る 
PAGE TOP