2020年東大 ヨビノりたくみさん解説 - 質問解決D.B.(データベース)

2020年東大 ヨビノりたくみさん解説

問題文全文(内容文):
$a \gt 0,b \gt 0$
$C:y=x^3-3ax^2+b$

条件1 $C$は$x$軸に接する
条件2 $x$軸と$C$で囲まれた領域(除く境界)に格子点1つのみ

$b$を$a$で表せ
$a$の範囲を求めよ

出典:2020年東京大学 過去問
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a \gt 0,b \gt 0$
$C:y=x^3-3ax^2+b$

条件1 $C$は$x$軸に接する
条件2 $x$軸と$C$で囲まれた領域(除く境界)に格子点1つのみ

$b$を$a$で表せ
$a$の範囲を求めよ

出典:2020年東京大学 過去問
投稿日:2020.03.01

<関連動画>

福田のおもしろ数学566〜条件付き不等式の証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$a\gt 0,b\gt 0,c\gt 0,abc=1$のとき、

$\dfrac{a}{ab+1}+\dfrac{b}{bc+1}+\dfrac{c}{ca+1} \geqq \dfrac{3}{2}$

を証明して下さい。
    
この動画を見る 

高専数学 微積II #50(1)(2) 曲面の接平面の方程式

アイキャッチ画像
単元: #数Ⅱ#平面上のベクトル#微分法と積分法#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
次の曲面上の点における接平面の方程式を求めよ.

(1)$z=x^2+2y^2 \ (1,1,3)$
(2)$z=\sqrt{5-x^2y^2} \ (1,2,1)$
この動画を見る 

福田の数学〜大阪大学2023年文系第1問〜三角方程式と解の存在範囲

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次関数とグラフ#図形と方程式#三角関数#円と方程式#三角関数とグラフ#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
a,bを実数とする。θについての方程式

$\cos 2θ =a\sin θ +b$

が実数解をもつような点(a,b)の存在範囲を座標平面上に図示せよ

2023大阪大学文系過去問
この動画を見る 

青山学院大 4次関数の接線 積分公式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#指数関数#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#青山学院大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^4+2x^3-3x^2-2x-4$と$y=ax+b$が異なる2点で接している

(1)
$a,b$の値を求めよ

(2)
$f(x)$と$y=ax+b$で囲まれる面積を求めよ

出典:1994年青山学院大学 過去問
この動画を見る 

【高校数学】 数Ⅱ-106 三角関数を含む関数の最大・最小②

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の関数の最大値と最小値、およびそのときの$\theta$の値を求めよう。

①$y=\sin^2 \theta +\cos \theta+1 (0\leqq \theta\lt2π)$

②$y=\cos^2 \theta +\sin \theta-1 (-\displaystyle \frac{π}{2}\leqq \theta\leqq\displaystyle \frac{π}{2})$
この動画を見る 
PAGE TOP