福田の数学・入試問題解説〜東北大学2022年理系第3問〜無限級数の和とはさみうちの原理 - 質問解決D.B.(データベース)

福田の数学・入試問題解説〜東北大学2022年理系第3問〜無限級数の和とはさみうちの原理

問題文全文(内容文):
\begin{eqnarray}
{\Large{\boxed{3}}}\ 正の整数nに対して、\\
S_n=\sum_{k=1}^n(\sqrt{1+\frac{k}{n^2}}-1)\\
とする。\\
(1)正の実数xに対して、次の不等式が成り立つことを示せ。\\
\\
\frac{x}{2+x} \leqq \sqrt{1+x}-1 \leqq \frac{x}{2}\\
\\
(2)極限値\lim_{n \to \infty}S_nを求めよ。
\end{eqnarray}

2022東北大学理系過去問
単元: #大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large{\boxed{3}}}\ 正の整数nに対して、\\
S_n=\sum_{k=1}^n(\sqrt{1+\frac{k}{n^2}}-1)\\
とする。\\
(1)正の実数xに対して、次の不等式が成り立つことを示せ。\\
\\
\frac{x}{2+x} \leqq \sqrt{1+x}-1 \leqq \frac{x}{2}\\
\\
(2)極限値\lim_{n \to \infty}S_nを求めよ。
\end{eqnarray}

2022東北大学理系過去問
投稿日:2022.03.19

<関連動画>

【数Ⅲ】極限:無限等比級数で表された関数のグラフの問題

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
教材: #サクシード#サクシード数学Ⅲ#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$f(x)=\sqrt{x}+\dfrac{\sqrt{x}}{1+\sqrt{x}}+\dfrac{\sqrt{x}}{(1+\sqrt{x})^2}+… $

について$y=f(x)$のグラフを書け
この動画を見る 

【高校数学】分数関数の漸近線とグラフの簡単な求め方!

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の関数のグラフをかけ。また,その漸近線を求めよ。
$y=\dfrac{-2x–10}{x+3}$
この動画を見る 

【数Ⅲ】極限:数列の極限と関数の極限の違いを解説します

アイキャッチ画像
単元: #関数と極限#数列の極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
数列の極限と関数の極限の違いを解説します
この動画を見る 

e話

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$e=\displaystyle\lim_{n \to \infty}(1+\frac{1}{n})^n$
$\displaystyle\lim_{n \to -\infty}(1+\frac{1}{n})^n=e$を示せ
この動画を見る 

大学入試問題#414「手抜き極限」 自治医科大学(2017) #極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#自治医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 0 } \displaystyle \frac{3\sin4x}{x+\sin\ x}$

出典:2017年自治医科大学 入試問題
この動画を見る 
PAGE TOP