一橋大 数学的帰納法 高校数学 Japanese university entrance exam questions - 質問解決D.B.(データベース)

一橋大 数学的帰納法 高校数学 Japanese university entrance exam questions

問題文全文(内容文):
2009一橋大学過去問題
$α={}^3\sqrt{7+5\sqrt{2}}$ $\quad$ $β={}^3\sqrt{7-5\sqrt{2}}$
n自然数
$α^n+β^n$は自然数であることを示せ。
単元: #大学入試過去問(数学)#数列#数学的帰納法#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
2009一橋大学過去問題
$α={}^3\sqrt{7+5\sqrt{2}}$ $\quad$ $β={}^3\sqrt{7-5\sqrt{2}}$
n自然数
$α^n+β^n$は自然数であることを示せ。
投稿日:2018.04.22

<関連動画>

漸化式と整数の融合問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=2$,$a_{n+1}=2^{n^2+2n-1}・a^2_n$
$a_n$の1の位が2になるのは$a_1$のみであることを示せ.

この動画を見る 

【数B】【数列】条件a1=4, an+1=4an+8/an+6によって定められる数列{an}に対して、bn=an-2/an+4とおくと、数列{bn}は等比数列である。数列{an}の一般項を求めよ。

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#中高教材#数列
指導講師: 理数個別チャンネル
問題文全文(内容文):
$a_{1}=4$
$a_{n+1} = \dfrac{4a_n + 8}{a_n + 6}$
によって定められる数列$a_n$に対して、
$b_n = \dfrac{a_n - 2}{a_n + 4}$
とおくと、数列 $b_n$は等比数列である。
数列$a_n$の一般項を求めよ。
この動画を見る 

横浜市立大(医)三項間漸化式 特性方程式(数3不要)

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#数学(高校生)#数B#横浜市立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
数列{$x_n$}
$x_{n+2}=-ax_{n+1}+2a^2x_n$
$x_1=1,x_2=b$ $a \neq 0$ $n$自然数

$\displaystyle \lim_{ n \to \infty }x_n=0$となる$a,b$の条件

出典:1989年横浜市立大学 医学部 過去問
この動画を見る 

福田の数学〜上智大学2024理工学部第2問〜漸化式と約数倍数の証明

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
次の条件によって定められる数列 ${a_n}$ を考える。
$a_1=2, \, a_{n+1}=a_n^2+a_n+1$
$(1)$ $a_n-2$ は $5$ で割り切れることを証明せよ。
$(2)$ $a_n^2+1$ は $5^n$ で割り切れることを証明せよ。
この動画を見る 

数列 千葉大

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.

$\displaystyle \sum_{k=1}^n \dfrac{5k+4}{k(k+1)(k+2)}$

1979千葉大過去問
この動画を見る 
PAGE TOP