一橋大 数学的帰納法 高校数学 Japanese university entrance exam questions - 質問解決D.B.(データベース)

一橋大 数学的帰納法 高校数学 Japanese university entrance exam questions

問題文全文(内容文):
2009一橋大学過去問題
$α={}^3\sqrt{7+5\sqrt{2}}$ $\quad$ $β={}^3\sqrt{7-5\sqrt{2}}$
n自然数
$α^n+β^n$は自然数であることを示せ。
単元: #大学入試過去問(数学)#数列#数学的帰納法#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
2009一橋大学過去問題
$α={}^3\sqrt{7+5\sqrt{2}}$ $\quad$ $β={}^3\sqrt{7-5\sqrt{2}}$
n自然数
$α^n+β^n$は自然数であることを示せ。
投稿日:2018.04.22

<関連動画>

熊本大(理)漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#熊本大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
一般項を求めよ
$a_1=\displaystyle \frac{1}{8}$

$(4n^2-1)(a_n-a_{n+1})=8(n^2-1)a_na_{n+1}$

熊本大学理学部過去問
この動画を見る 

【数学B/数列】an+1=pan+q型の漸化式(特性方程式)

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次のように定義される数列{$a_n$}の一般項$a_n$を求めよ。
$a_1=2,$  $a_{n+1}=3a_n-2$
この動画を見る 

東大 レピュニット数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#数列#数学的帰納法#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\overbrace{ 1111 + \cdots +11}^{3^n桁}$は$3^n$で割り切れるが
$3^{n+1}$では割り切れないことを示せ.

東大過去問
この動画を見る 

明けましておめでとうございます。変な問題

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
どちらが大きいか?
$50^{99}$ VS $99!$
この動画を見る 

記号は大学数学でも頑張れば中学生でもできる

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\dfrac{2^3-1}{2^3+1}・\dfrac{3^3-1}{3^3+1}・\dfrac{4^3-1}{4^3+1}・\dfrac{5^3-1}{5^3+1}…$
$\displaystyle \prod_{n=2}^{\infty} \dfrac{n^3-1}{n^3+1}=?$
これを解け.
この動画を見る 
PAGE TOP