積分で面積が出る理由 - 質問解決D.B.(データベース)

積分で面積が出る理由

問題文全文(内容文):
積分をするとどうして面積が出るの?

仕組みを解説します!
単元: #数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
積分をするとどうして面積が出るの?

仕組みを解説します!
投稿日:2017.11.23

<関連動画>

東大 大島さんと数学 球の体積

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
球の体積の求め方を解説していきます.
この動画を見る 

名古屋大 積分 面積公式の証明 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#名古屋大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
名古屋大学過去問題
$C:y=x^3-3x^2+2x$
原点を通り、原点以外でCと接する直線l
lとCで囲まれた部分の面積
この動画を見る 

数学「大学入試良問集」【12−5 3次関数と接線】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#名古屋市立大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
3次曲線$C:y=x^3-4x$とその上の点$P(2,0)$について考える
点$P$で曲線$C$に接する直線が曲線$C$と交わる点を$Q$とする。
また$R$は、$P$と異なる曲線$C$上の点であって、そして直線$PR$は曲線$C$に点$R$で接するものとする。
このとき、次の各問いに答えよ。
(1)点$Q$の$x$座標を求めよ。
(2)点$R$の$x$座標を求めよ。
(3)直線$PR$と曲線$C$で囲まれた部分の面積を求めよ。
この動画を見る 

兵庫県教員採用試験(数学練習問題1 y軸回転体)

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#その他#面積、体積#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$n$を自然数とする.
$y=\sin nx,y=1,y$軸で囲まれた部分を
$y$軸を中心に回転した体積$V$を求めよ.
この動画を見る 

福田の数学〜東京慈恵会医科大学2024医学部第4問〜円板を軸の周りに回転してできる立体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
$\mathrm{O}$を原点とする$\mathrm{xyz} $平面において、3点 $\mathrm{A(1,\dfrac{2}{\sqrt{3}}, 0), B(-1, \dfrac{2}{\sqrt{3}}, 0), C(0, 0, 2)}$ の定める平面$\mathrm{ABC}$ 上に$\mathrm{O}$ から垂線$\mathrm{OH}$ を下ろす。平面$\mathrm{ABC}$ において、$\mathrm{H}$ を中心とする半径$\mathrm{1}$の円板(内部を含む)$\mathrm{D}$ を考える。
(1)平面$\mathrm{z = t}$ が$\mathrm{D}$と交わるような$\mathrm{t}$の範囲を求めよ。
(2)$\mathrm{D}$を$\mathrm{z}$軸の周りに$\mathrm{1}$回転させるとき、$\mathrm{D}$が通過してできる立体$\mathrm{K}$の体積$\mathrm{V}$を求めよ。
この動画を見る 
PAGE TOP