関西大 整式の剰余 2つの解法で - 質問解決D.B.(データベース)

関西大 整式の剰余 2つの解法で

問題文全文(内容文):
整式$P(x)$を$x^2-1$で割ると余りは$x-3$であり,$x^2+1$で割ると余りは$-x+5$である.
$P(x)$を$x^4-1$で割った余りを2通りの解法で求めよ

2001関西大過去問
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
整式$P(x)$を$x^2-1$で割ると余りは$x-3$であり,$x^2+1$で割ると余りは$-x+5$である.
$P(x)$を$x^4-1$で割った余りを2通りの解法で求めよ

2001関西大過去問
投稿日:2020.11.02

<関連動画>

福田のおもしろ数学480〜三角関数の不等式の証明とイェンゼンの不等式

アイキャッチ画像
単元: #数Ⅱ#式と証明#三角関数#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$0\leqq \alpha,\beta \gamma \lt 90°$

$\sin \alpha +\sin \beta +\sin \gamma =1$のとき

$\tan^2\alpha+\tan^2\beta+\tan^2\gamma \geqq\dfrac{3}{8}$

を証明して下さい。
    
この動画を見る 

福田のおもしろ数学303〜階乗のたくさんある分数の和

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\displaystyle \frac{1}{2! 17!} $$\displaystyle + \frac{1}{3! 16!} $$\displaystyle + \frac{1}{4! 15!}$$+ \cdots $$\displaystyle + \frac{1}{9! 10!} $$\displaystyle = \frac{N}{1! 18!}$ を満たす $N$ を求めよ。
この動画を見る 

2021東京医科大学 2つの解法で 整式の剰余

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$F(x)$を$x^3-2x^2+3$で割ると$4x^2+5x+33$余る.
$F(x)$を$x^2-3x+3$で割った余りを求めよ.

2021東京医科大過去問
この動画を見る 

福田のおもしろ数学565〜Nesbittの不等式の証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$a\gt 0,b\gt 0,c \gt 0$のとき

$\dfrac{c}{a+b}+\dfrac{a}{b+c}+\dfrac{b}{c+a} \geqq \dfrac{3}{2}$

を証明して下さい。
    
この動画を見る 

福田の数学〜東京大学2023年理系第5問〜整式の割り算と2重因子をもつ条件

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#複素数と方程式#整式の除法・分数式・二項定理#恒等式・等式・不等式の証明#剰余の定理・因数定理・組み立て除法と高次方程式#微分とその応用#微分法#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 整式f(x)=$(x-1)^2(x-2)$を考える。
(1)g(x)を実数を係数とする整式とし、g(x)をf(x)で割った余りをr(x)とおく。
$g(x)^7$をf(x)で割った余りと$r(x)^7$をf(x)で割った余りが等しいことを示せ。
(2)a,bを実数とし、h(x)=$x^2$+ax+b とおく。$h(x)^7$をf(x)で割った余りを$h_1(x)$とおき、$h_1(x)^7$をf(x)で割った余りを$h_2(x)$とおく。$h_2(x)$がh(x)に等しくなるようなa,bの組を全て求めよ。

2023東京大学理系過去問
この動画を見る 
PAGE TOP