【数Ⅱ】【複素数と方程式】剰余の定理と因数定理2 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅱ】【複素数と方程式】剰余の定理と因数定理2 ※問題文は概要欄

問題文全文(内容文):
多項式P(x)を(x-1)(x+2)で割ると余りが3x-1である。P(x)をx-1およびx-2で割ったときの余りを、それぞれ求めよ。

多項式P(x)をx-2で割ると余りが5, x-3で割ると余りが9である。P(x)を(x-2)(x-3)で割ったときの余りを求めよ。

多項式P(x)をx²-3x+2で割ると余りが-x+4, x²-4x+3で割ると余りが3xである。P(x)をx²-5x+6で割ったときの余りを求めよ。
チャプター:

0:00 オープニング
0:04 問題1の解説
2:21 問題2の解説
5:32 問題3の解説

単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#複素数と方程式#中学受験教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
多項式P(x)を(x-1)(x+2)で割ると余りが3x-1である。P(x)をx-1およびx-2で割ったときの余りを、それぞれ求めよ。

多項式P(x)をx-2で割ると余りが5, x-3で割ると余りが9である。P(x)を(x-2)(x-3)で割ったときの余りを求めよ。

多項式P(x)をx²-3x+2で割ると余りが-x+4, x²-4x+3で割ると余りが3xである。P(x)をx²-5x+6で割ったときの余りを求めよ。
投稿日:2025.02.26

<関連動画>

2分で解ける問題

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x^2+\dfrac{1}{x^2}=\sqrt2 $のとき,$ x^{2022}+\dfrac{1}{x^{2022}}$の値を求めよ.
この動画を見る 

式の値

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^4+x^3+x^2+x+1=0$を満たすとき,
$(x^{2019}+x^{2018}+x^{2017}+1)^{5n}+$
$(x^{2019}+x^{2018}+x^{2016}+1)^{5n-5}$の値を求めよ.
この動画を見る 

山梨大 複素数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#山梨大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$z=\displaystyle \frac{1}{2}+\displaystyle \frac{\sqrt{ 3 }}{2}i$

$z^5+z^4+z^2+z+1$の値を求めよ。

出典:山梨大学 過去問
この動画を見る 

福田の数学〜東京大学2023年文系数学第1問〜解と係数の関係と最小値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#微分法と積分法#解と判別式・解と係数の関係#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ kを正の実数とし、2次方程式$x^2+x-k$=0 の2つの実数解をα,βとする。
kがk>2の範囲を動くとき、
$\displaystyle\frac{\alpha^3}{1-\beta}$+$\displaystyle\frac{\beta^3}{1-\alpha}$
の最小値を求めよ。

2023東京大学文系過去問
この動画を見る 

きっと良問

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
P(x)はxの3次式でP(11)=11,P(12)=12,P(13)=14,P(14)=15である.
P(15)のときはいくつであるか求めよ.
この動画を見る 
PAGE TOP