#高知工科大学2024#定積分_25#元高校教員 - 質問解決D.B.(データベース)

#高知工科大学2024#定積分_25#元高校教員

問題文全文(内容文):
$\displaystyle \int_{-1}^{3} x|x-2| dx$

出典:2024年 高知工科大学
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#高知工科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-1}^{3} x|x-2| dx$

出典:2024年 高知工科大学
投稿日:2024.08.29

<関連動画>

【数Ⅱ】【微分法と積分法】係数比較から関数の決定 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
2次関数$f(x)$の1つの不定積分$F(x)$が$xf(x)-2x^3+3x^2$に等しく、$f(1)=0$であるとき、$f(x)$を求めよ。
この動画を見る 

福田の数学〜定積分で表された関数の標準問題〜慶應義塾大学2023年環境情報学部第2問〜定積分で表された関数と共通接線

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
関数f(x)が
$f(x)=-2x^2\displaystyle \int_{0}^{ 1 } f(t) dt-12x+\dfrac{2}{9}\displaystyle \int_{-1}^{ 0 } f(t) dt$

$g(x)=\displaystyle \int_{0}^{ 1 } (3x^2+t)g(t)dt-\dfrac{3}{4}$
を満たしている。このとき
$f(x)=\fbox{ア}x^2-12x+\fbox{イ},g(x)=\fbox{ウ}x^2+\fbox{エ}$
である。またxy平面上のy=f(x)とy=g(x)のグラフの共通接戦は$y=\fbox{オ}x+\dfrac{\fbox{カ}}{\fbox{キ}}$
である。なお、nを0または生の整数としたとき、$x^n$の不定積分は
$\displaystyle \int_{}^{}x^ndx=\dfrac{1}{n+1}x^{n+1}+C$(Cは積分定数)である。
この動画を見る 

【高校数学】 数Ⅱ-167 不定積分②

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①条件$F'(x)=6x^2-2x-3,F(2)=0$を満たす関数$F(x)$を求めよう。

②点(2,1)を通る曲線$y=f(x)$上の点$(x,y)$における接線の傾きが$2x-4$であるとき、$f(x)$を求めよう。
この動画を見る 

#千葉大学2024#定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#千葉大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
以下の定積分を解け。
$\displaystyle \int_{0}^{\frac{2}{3}\pi} x^2\sin x$ $dx$

出典:2024年千葉大学
この動画を見る 

福田の数学〜慶應義塾大学2024総合政策学部第2問〜定積分で表された関数の最大値

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
負でない実数 $t$ に対して定義される関数 $\displaystyle\frac{9}{2}t-3\int^{1}_{0}|(x-t)(x-2t)|dx$ の最大値と、そのときの $t$ の値は?
この動画を見る 
PAGE TOP