福田のおもしろ数学472〜漸化式で与えられた数列の逆数の和 - 質問解決D.B.(データベース)

福田のおもしろ数学472〜漸化式で与えられた数列の逆数の和

問題文全文(内容文):

$a_1=2,a_{n+1}={a_n}^2-a_n+1$のとき

$\dfrac{1}{a_1}+\dfrac{1}{a_2}+\dfrac{1}{a_3}+・・・+\dfrac{1}{a_{2025}}\lt 1$

を証明して下さい。
    
単元: #数列#数列とその和(等差・等比・階差・Σ)#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

$a_1=2,a_{n+1}={a_n}^2-a_n+1$のとき

$\dfrac{1}{a_1}+\dfrac{1}{a_2}+\dfrac{1}{a_3}+・・・+\dfrac{1}{a_{2025}}\lt 1$

を証明して下さい。
    
投稿日:2025.04.18

<関連動画>

数検準1級2次(4番 行列)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数列#数列とその和(等差・等比・階差・Σ)#数学検定#数学検定準1級#数学(高校生)#数B
指導講師: ますただ
問題文全文(内容文):
$\boxed{4}$ $A=\dbinom{a \quad b}{ c\quad d },A^2=\theta $

$kE-A$が逆行列をもつための必要十分条件を求めよ.
この動画を見る 

福田の数学〜京都大学2023年文系第4問〜部分和を含んだ漸化式の解法

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 数列{$a_n$}は次の条件を満たしている。
$a_1$=3, $a_n$=$\frac{S_n}{n}$+$(n-1)・2^n$ (n=2,3,4,...)
ただし、$S_n$=$a_1$+$a_2$+...+$a_n$である。このとき、数列{$a_n$}の一般項を求めよ。

2023京都大学文系過去問
この動画を見る 

【高校数学】 数B-92 漸化式⑥

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の条件で定められる数列$\{a_n\}$の一般項を求めよう.

①$a_1=2,a_{n+1}=2a_n+2^{n+1}$

②$a_1=1,9a_{n+1}=a_n+\dfrac{4}{3^n}$
この動画を見る 

京都大 漸化式 超基本問題 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_{1}=0,$ $a_{2}=1$ 一般項を求めよ
$(n-1)^2a_{n}=S_{n}(n \geqq 1)$

出典:2002年京都大学 過去問
この動画を見る 

福田の一夜漬け数学〜数学III 複素数平面〜ド・モアブルの定理(4)早稲田大学の問題に挑戦

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#数列#漸化式#複素数平面#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B#数C
指導講師: 福田次郎
問題文全文(内容文):
複素数$z_n (n=1,2,3\cdots)$が次の式を満たしている。
$z_1=1,\ z_2=\displaystyle \frac{1}{2},$ 複素数の積$z_nz_{n+1}=\displaystyle \frac{1}{2}\left(\displaystyle \frac{1+\sqrt3i}{2}\right)^{n-1}$
このとき、$S=z_1+z_2+z_3+\cdots\cdots+z_{2002}$を求めよ。

早稲田大学過去問
この動画を見る 
PAGE TOP