【数Ⅱ】【三角関数】三角関数の合成4 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅱ】【三角関数】三角関数の合成4 ※問題文は概要欄

問題文全文(内容文):
0$\leqq$x$\leqq$πのとき、次の関数の最大値, 最小値を求めよ。(1)については、そのときのxの値も求めよ。
(1) y=sinx+$\sqrt{3}$cosx
(2) y=2sinx+cosx
チャプター:

0:00 オープニング
0:06 問題文
0:15 (1)解説
2:28 (2)解説

単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#三角関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
0$\leqq$x$\leqq$πのとき、次の関数の最大値, 最小値を求めよ。(1)については、そのときのxの値も求めよ。
(1) y=sinx+$\sqrt{3}$cosx
(2) y=2sinx+cosx
投稿日:2025.03.13

<関連動画>

【数Ⅱ】三角関数:2021年高3第1回K塾記述模試

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
aは実数の定数とし、$0\leqq\theta\lt 2\pi$とする。次の2つの式を考える。
$8a\cos\theta- 8\cos2\theta=a^2+7$…①
$\sin\theta-\cos\theta\gt-1$…②
(1)a=1のとき、方程式①を解け。
(2)不等式②を 解け。
(3)(2)で求めた範囲に①の異なる解がちょうど3個存在するようなaの値の 範囲を求めよ。
この動画を見る 

福田の数学〜2直線のなす角はtanの加法定理〜慶應義塾大学2023年商学部第2問〜2直線のなす角と面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$a \gt 0,b \lt 0$とする。放物線C:$y=\dfrac{3}{2}x^2$上の点A(a,$\dfrac{3}{2}a^2$)と点B(b,$\dfrac{3}{2}b^2$)について、点Aと点Bにおける放物線の接線をそれぞれlとmで表し、その好転をPとする。
(1)lとmが直交するとき、交点Pのy座標は$-\dfrac{\fbox{ア}}{\fbox{イ}}$である。
(2)a=2で、$\angle APB=\dfrac{\pi}{4}$とする。このとき、bの値は$-\dfrac{\fbox{ウ}}{\fbox{エオ}}$である。
(3)b=-aで、$\angle APB=\dfrac{\pi}{3}$とする。この時、aの値は$\dfrac{\sqrt{\fbox{カ}}}{\fbox{キ}}$である。また、PAを半径、$\angle APB$を中心角として扇形PABが定まる。この扇形は放物線Cによって2つの図形に分割され、大きい図形の面積と小さい図形の面積の差は$\dfrac{\fbox{ク}}{\fbox{ケ}}\pi-\dfrac{\fbox{コ}\sqrt{\fbox{サ}}}{\fbox{シ}}$である。

2023慶應義塾大学商学部過去問
この動画を見る 

【数Ⅱ】【三角関数】三角関数の合成5 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#三角関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の関数の最大値, 最小値と, そのときのxの値も求めよ。
y=2sin$^{2}$x+2$\sqrt{3}$sinxcosx+4cos$^{2}$x (0$\leqq$x$\lt$2π)
この動画を見る 

cosの和を求める

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\cos \dfrac{\pi}{7}-\cos \dfrac{2\pi}{7}+\cos \dfrac{3\pi}{7}$を求めよ
この動画を見る 

【高校数学】 数Ⅱ-112 加法定理の応用②・3倍角の公式編

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$sin3\alpha=3\sin\alpha-4\sin^3\alpha$を証明しよう。

②$cos3\alpha=3\cos\alpha-4\cos^3\alpha$を証明しよう。
この動画を見る 
PAGE TOP