福田次郎
※下の画像部分をクリックすると、先生の紹介ページにリンクします。
福田のおもしろ数学144〜連続する6個の自然数を積の等しい2グループに分けられない証明
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
連続する6個の自然数を2つのグループに分けて、それぞれのグループに属する自然数の積を等しくすることはできない。
これを示せ。
この動画を見る
連続する6個の自然数を2つのグループに分けて、それぞれのグループに属する自然数の積を等しくすることはできない。
これを示せ。
福田の数学〜慶應義塾大学2024年商学部第2問(4)〜領域と集合の要素の個数
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ (4)$xy$平面上で、不等式$x$≦5 の表す領域を$A$, 不等式$x$+$y$≧10 の表す領域を$B$とする。また、$xy$平面上の点の集合$S$は以下の3つの条件をすべて満たす。
(条件1)$S$に含まれるどの点も、その$x$座標と$y$座標はともに1以上10以下の自然数である。
(条件2)$S$の要素で領域$A$に含まれるものは、領域$B$に含まれる。
(条件3)$S$の要素で領域$B$に含まれるものは、領域$A$に含まれる。
$S$を、条件1~3を満たす中で要素の個数が最大のものとするとき、その要素の個数は$\boxed{シス}$である。
この動画を見る
$\Large\boxed{2}$ (4)$xy$平面上で、不等式$x$≦5 の表す領域を$A$, 不等式$x$+$y$≧10 の表す領域を$B$とする。また、$xy$平面上の点の集合$S$は以下の3つの条件をすべて満たす。
(条件1)$S$に含まれるどの点も、その$x$座標と$y$座標はともに1以上10以下の自然数である。
(条件2)$S$の要素で領域$A$に含まれるものは、領域$B$に含まれる。
(条件3)$S$の要素で領域$B$に含まれるものは、領域$A$に含まれる。
$S$を、条件1~3を満たす中で要素の個数が最大のものとするとき、その要素の個数は$\boxed{シス}$である。
福田のおもしろ数学143〜斜面の勾配
単元:
#数学(中学生)#中3数学#大学入試過去問(数学)#三平方の定理#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
傾いた平面上で、もっとも急な方向の勾配(傾き)が$\frac{1}{3}$であるという。いま南北方向の勾配を測ったところ$\frac{1}{5}$であった。
東西方向の勾配はどれだけか。
この動画を見る
傾いた平面上で、もっとも急な方向の勾配(傾き)が$\frac{1}{3}$であるという。いま南北方向の勾配を測ったところ$\frac{1}{5}$であった。
東西方向の勾配はどれだけか。
福田の数学〜慶應義塾大学2024年商学部第2問(3)〜最小公倍数の変化と個数
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ (3)1から$n$までの$n$個の自然数の最小公倍数を$a_n$とする。
・$a_n$=$a_{n+1}$を満たす最小の自然数$n$は$\boxed{ケ}$である。
・$a_{n+1}$=$2a_n$を満たす10000以下の自然数$n$は$\boxed{コサ}$個ある。
この動画を見る
$\Large\boxed{2}$ (3)1から$n$までの$n$個の自然数の最小公倍数を$a_n$とする。
・$a_n$=$a_{n+1}$を満たす最小の自然数$n$は$\boxed{ケ}$である。
・$a_{n+1}$=$2a_n$を満たす10000以下の自然数$n$は$\boxed{コサ}$個ある。
福田の中学入試の算数004〜豊島岡女子学園中学校2011年〜円の一部分の面積を求める
単元:
#算数(中学受験)#過去問解説(学校別)#平面図形#角度と面積#豊島岡女子学園中学
指導講師:
福田次郎
問題文全文(内容文):
左図(※動画参照)は半径3 cmの円の周を12等分した点をとり、点を図のように直線で結んだ。
図の色の付いた部分の面積は何 $\textrm{cm}^2$か。円周率は3.14とする。
この動画を見る
左図(※動画参照)は半径3 cmの円の周を12等分した点をとり、点を図のように直線で結んだ。
図の色の付いた部分の面積は何 $\textrm{cm}^2$か。円周率は3.14とする。
福田の数学〜慶應義塾大学2024年商学部第2問(2)〜ベクトルの列とその絶対値の評価
単元:
#数Ⅱ#大学入試過去問(数学)#平面上のベクトル#指数関数と対数関数#対数関数#数列#平面上のベクトルと内積#漸化式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B#数C
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ (2)ベクトルの列 $\overrightarrow{a_1}$, $\overrightarrow{a_2}$, ..., $\overrightarrow{a_n}$, ...を条件
$\overrightarrow{a_1}$=(1,0), $\overrightarrow{a_2}$=$\left(\frac{1}{2}, \frac{\sqrt 3}{2}\right)$, $\overrightarrow{a_{n+2}}$=$\displaystyle\frac{\overrightarrow{a_{n+1}}・\overrightarrow{a_n}}{|\overrightarrow{a_n}|^2}\overrightarrow{a_n}$
で定める。このとき$\overrightarrow{a_9}$=$\left(\frac{\boxed{イ}}{\boxed{ウエオ}}, \boxed{カ}\right)$である。また、$|\overrightarrow{a_n}|$<$10^{-25}$を満たす最小の自然数$n$は$\boxed{キク}$である。ただし、必要であれば、$\log_{10}2$=0.301を近似として用いてよい。
この動画を見る
$\Large\boxed{2}$ (2)ベクトルの列 $\overrightarrow{a_1}$, $\overrightarrow{a_2}$, ..., $\overrightarrow{a_n}$, ...を条件
$\overrightarrow{a_1}$=(1,0), $\overrightarrow{a_2}$=$\left(\frac{1}{2}, \frac{\sqrt 3}{2}\right)$, $\overrightarrow{a_{n+2}}$=$\displaystyle\frac{\overrightarrow{a_{n+1}}・\overrightarrow{a_n}}{|\overrightarrow{a_n}|^2}\overrightarrow{a_n}$
で定める。このとき$\overrightarrow{a_9}$=$\left(\frac{\boxed{イ}}{\boxed{ウエオ}}, \boxed{カ}\right)$である。また、$|\overrightarrow{a_n}|$<$10^{-25}$を満たす最小の自然数$n$は$\boxed{キク}$である。ただし、必要であれば、$\log_{10}2$=0.301を近似として用いてよい。
福田のおもしろ数学142〜チェビシェフの多項式に関する証明
単元:
#数Ⅱ#式と証明#三角関数#恒等式・等式・不等式の証明#加法定理とその応用#数列#数学的帰納法#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
$n$を正の整数とする。$\cos n\theta$は$\cos\theta$の$n$次式で表されることを証明してください。
この動画を見る
$n$を正の整数とする。$\cos n\theta$は$\cos\theta$の$n$次式で表されることを証明してください。
福田の数学〜慶應義塾大学2024年商学部第2問(1)〜無理数の小数第3位の数字と第4位の数字
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{2}$
(1)$\sqrt{13}$を10進法の小数で表したとき小数第3位の数字は$\boxed{\ \ ア\ \ }$、小数第4位の数字は$\boxed{\ \ イ\ \ }$である。ただし、必要であれば$(3.606)^2$=$13.003236$ であることを用いてよい。
この動画を見る
$\Large\boxed{2}$
(1)$\sqrt{13}$を10進法の小数で表したとき小数第3位の数字は$\boxed{\ \ ア\ \ }$、小数第4位の数字は$\boxed{\ \ イ\ \ }$である。ただし、必要であれば$(3.606)^2$=$13.003236$ であることを用いてよい。
福田のおもしろ数学141〜指数方程式の解
単元:
#数Ⅱ#指数関数と対数関数#指数関数#対数関数#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
次の式を満たす$x$を求めよ。
$40^{x-1}$=$2^{2x+1}$
この動画を見る
次の式を満たす$x$を求めよ。
$40^{x-1}$=$2^{2x+1}$
福田の数学〜慶應義塾大学2024年商学部第1問(4)〜不等式に関する文章題
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$
(4)ある業者は、三つの工場A, B, Cから廃棄物を回収し、その中に含まれる三つの金属P, Q, Rを取り出して新たな製品Kを作る。各工場の廃棄物から取り出されるP, Q, Rの量は以下の通りである。
・工場Aの廃棄物10 kgからPが3 kg、Qが5 kg、Rが1 kg取り出される。
・工場Bの廃棄物10 kgからPが1 kg、Qが3 kg、Rが2 kg取り出される。
・工場Cの廃棄物10 kgからPが4 kg、Qが1 kg、Rが1 kg取り出される。
また、Pが2 kgと、Qが2 kgと、Rが1 kgで製品Kが1個作られる。工場A, B, Cから合わせて200 kgの廃棄物が回収できるとき、製品Kをできるだけ多く作るには、工場Aから$\boxed{\ \ ウ\ \ }$ kg、工場Bから$\boxed{\ \ エ\ \ }$ kg、工場Cから$\boxed{\ \ オ\ \ }$ kgの廃棄物を回収すればよく、そのとき製品Kは$\boxed{\ \ カ\ \ }$個作ることができる。
この動画を見る
$\Large\boxed{1}$
(4)ある業者は、三つの工場A, B, Cから廃棄物を回収し、その中に含まれる三つの金属P, Q, Rを取り出して新たな製品Kを作る。各工場の廃棄物から取り出されるP, Q, Rの量は以下の通りである。
・工場Aの廃棄物10 kgからPが3 kg、Qが5 kg、Rが1 kg取り出される。
・工場Bの廃棄物10 kgからPが1 kg、Qが3 kg、Rが2 kg取り出される。
・工場Cの廃棄物10 kgからPが4 kg、Qが1 kg、Rが1 kg取り出される。
また、Pが2 kgと、Qが2 kgと、Rが1 kgで製品Kが1個作られる。工場A, B, Cから合わせて200 kgの廃棄物が回収できるとき、製品Kをできるだけ多く作るには、工場Aから$\boxed{\ \ ウ\ \ }$ kg、工場Bから$\boxed{\ \ エ\ \ }$ kg、工場Cから$\boxed{\ \ オ\ \ }$ kgの廃棄物を回収すればよく、そのとき製品Kは$\boxed{\ \ カ\ \ }$個作ることができる。
福田のおもしろ数学140〜不等式の証明とRavi変換
単元:
#数Ⅱ#数学検定・数学甲子園・数学オリンピック等#式と証明#恒等式・等式・不等式の証明#数学オリンピック#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$a$, $b$, $c$が三角形の3辺の長さのとき次の不等式を証明せよ。
$a^2(b+c-a)$+$b^2(c+a-b)$+$c^2(a+b-c)$≦$3abc$
この動画を見る
$a$, $b$, $c$が三角形の3辺の長さのとき次の不等式を証明せよ。
$a^2(b+c-a)$+$b^2(c+a-b)$+$c^2(a+b-c)$≦$3abc$
福田の数学〜慶應義塾大学2024年商学部第1問(3)〜不定方程式の自然数解
単元:
#数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$
(3)$a$<$b$<$c$かつ $\displaystyle\frac{1}{a}$+$\displaystyle\frac{2}{b}$+$\displaystyle\frac{3}{c}$=$2$ を満たす自然数の組($a$, $b$, $c$)をすべて求めよ。
この動画を見る
$\Large\boxed{1}$
(3)$a$<$b$<$c$かつ $\displaystyle\frac{1}{a}$+$\displaystyle\frac{2}{b}$+$\displaystyle\frac{3}{c}$=$2$ を満たす自然数の組($a$, $b$, $c$)をすべて求めよ。
福田のおもしろ数学139〜全ての三角形は二等辺三角形である証明
福田の数学〜慶應義塾大学2024年商学部第1問(2)〜定積分で表された関数
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$
(2)等式 $f(x)$=$12x^2$+$\displaystyle 6x\int_0^1f(t)dt$+$\displaystyle 2\int_0^1tf(t)dt$ を満たす関数$f(x)$を求めよ。
この動画を見る
$\Large\boxed{1}$
(2)等式 $f(x)$=$12x^2$+$\displaystyle 6x\int_0^1f(t)dt$+$\displaystyle 2\int_0^1tf(t)dt$ を満たす関数$f(x)$を求めよ。
福田のおもしろ数学138〜シグマ計算
単元:
#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
$\displaystyle\sum_{k=1}^nk(k!)$ を求めよ。
この動画を見る
$\displaystyle\sum_{k=1}^nk(k!)$ を求めよ。
福田の数学〜慶應義塾大学2024年商学部第1問(1)〜指数法則を使った計算
単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$
(1)式$3(x+5)^{-\frac{5}{2}}$ の値は、$x$=$0$ のとき $\boxed{\ \ ア\ \ }$ であり、$x$=$4$ のとき $\boxed{\ \ イ\ \ }$ である。
この動画を見る
$\Large\boxed{1}$
(1)式$3(x+5)^{-\frac{5}{2}}$ の値は、$x$=$0$ のとき $\boxed{\ \ ア\ \ }$ であり、$x$=$4$ のとき $\boxed{\ \ イ\ \ }$ である。
福田のおもしろ数学137〜三角関数の等式の証明
単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\displaystyle\cos\frac{\pi}{7}$+$\displaystyle\cos\frac{3\pi}{7}$+$\displaystyle\cos\frac{5\pi}{7}$=$\displaystyle\frac{1}{2}$ であることを証明せよ。
この動画を見る
$\displaystyle\cos\frac{\pi}{7}$+$\displaystyle\cos\frac{3\pi}{7}$+$\displaystyle\cos\frac{5\pi}{7}$=$\displaystyle\frac{1}{2}$ であることを証明せよ。
福田の数学〜早稲田大学2024年理工学部第5問〜媒介変数表示のグラフと回転体の体積
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#微分とその応用#積分とその応用#微分法#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ $xy$平面上において、以下の媒介変数表示をもつ曲線を$C$とする。
$\left\{\begin{array}{1}
x=\sin t+\displaystyle\frac{1}{2}\sin 2t \\
y=-\cos t-\displaystyle\frac{1}{2}\cos 2t-\frac{1}{2}\\
\end{array}\right.
$
ただし、0≦$t$≦$\pi$とする。
(1)$y$の最大値、最小値を求めよ。
(2)$\displaystyle\frac{dy}{dt}$<0 となる$t$の範囲を求め、$C$の概形を$xy$平面上に描け。
(3)$C$を$y$軸のまわりに1回転してできる立体の体積$V$を求めよ。
この動画を見る
$\Large\boxed{5}$ $xy$平面上において、以下の媒介変数表示をもつ曲線を$C$とする。
$\left\{\begin{array}{1}
x=\sin t+\displaystyle\frac{1}{2}\sin 2t \\
y=-\cos t-\displaystyle\frac{1}{2}\cos 2t-\frac{1}{2}\\
\end{array}\right.
$
ただし、0≦$t$≦$\pi$とする。
(1)$y$の最大値、最小値を求めよ。
(2)$\displaystyle\frac{dy}{dt}$<0 となる$t$の範囲を求め、$C$の概形を$xy$平面上に描け。
(3)$C$を$y$軸のまわりに1回転してできる立体の体積$V$を求めよ。
福田の中学入試の算数003〜灘中学校2006年〜展開図から立体の体積を求める
単元:
#算数(中学受験)#過去問解説(学校別)#平面図形#図形の移動#立体図形#立体図形その他#灘中学校
指導講師:
福田次郎
問題文全文(内容文):
左図(※動画参照)は一辺8 cmの正方形から底辺が8 cm、高さ2 cmの二等辺三角形を4つ切り取ってできる四角すいの展開図である。この四角すいの体積を求めよ。
この動画を見る
左図(※動画参照)は一辺8 cmの正方形から底辺が8 cm、高さ2 cmの二等辺三角形を4つ切り取ってできる四角すいの展開図である。この四角すいの体積を求めよ。
福田の数学〜早稲田大学2024年理工学部第4問〜確率漸化式
単元:
#数Ⅱ#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#早稲田大学#数B
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 2つのチーム$W$, $K$が$n$回試合を行う。ただし$n$≧2とする。各試合での$W$, $K$それぞれの勝つ確率は$\displaystyle\frac{1}{2}$とし、引き分けはないものとする。$W$が連敗しない確率を$p_n$とする。ただし、連敗とは2回以上続けて負けることを言う。
(1)$p_3$を求めよ。
(2)$p_{n+2}$を$p_{n+1}$と$p_n$を用いて表せ。
(3)以下の2式を満たす$\alpha$, $\beta$を求めよ。ただし、$\alpha$<$\beta$とする。
$p_{n+2}$-$\beta p_{n+1}$=$\alpha (p_{n+1}-\beta p_n)$
$p_{n+2}$-$\alpha p_{n+1}$=$\beta (p_{n+1}-\alpha p_n)$
(4)$p_n$ を求めよ。
この動画を見る
$\Large\boxed{4}$ 2つのチーム$W$, $K$が$n$回試合を行う。ただし$n$≧2とする。各試合での$W$, $K$それぞれの勝つ確率は$\displaystyle\frac{1}{2}$とし、引き分けはないものとする。$W$が連敗しない確率を$p_n$とする。ただし、連敗とは2回以上続けて負けることを言う。
(1)$p_3$を求めよ。
(2)$p_{n+2}$を$p_{n+1}$と$p_n$を用いて表せ。
(3)以下の2式を満たす$\alpha$, $\beta$を求めよ。ただし、$\alpha$<$\beta$とする。
$p_{n+2}$-$\beta p_{n+1}$=$\alpha (p_{n+1}-\beta p_n)$
$p_{n+2}$-$\alpha p_{n+1}$=$\beta (p_{n+1}-\alpha p_n)$
(4)$p_n$ を求めよ。
福田のおもしろ数学136〜巨大な数の大小関係
単元:
#数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$2023^{2024}$と$2024^{2023}$の大小を比較してください。
この動画を見る
$2023^{2024}$と$2024^{2023}$の大小を比較してください。
福田の数学〜早稲田大学2024年理工学部第3問〜四面体の内部に出来る八面体の体積
単元:
#大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 点O, A, B, Cを頂点とする四面体OABCを考える。辺OA, OB, OCの中点をそれぞれP, Q, Rとし、辺BC, CA, ABの中点をそれぞれS, T, Uとする。
(1)辺PS, QT, RUが1点で交わることを示せ。
(2)$OA^2$+$BC^2$=$OB^2$+$CA^2$=$OC^2$+$AB^2$ のとき、点P, Q, R, S, T, Uが同一球面上にあることを示せ。
(3)(2)において、辺PSが辺OA, BCと直交するとし、辺OA, BCの長さをそれぞれ$a$, $k$とする。点P, Q, R, S, T, Uを頂点とする八面体の体積$V$を$a$と$k$を用いて表せ。
(4)(3)において、$k$=1のとき八面体の体積$V$の最大値を求めよ。
この動画を見る
$\Large\boxed{3}$ 点O, A, B, Cを頂点とする四面体OABCを考える。辺OA, OB, OCの中点をそれぞれP, Q, Rとし、辺BC, CA, ABの中点をそれぞれS, T, Uとする。
(1)辺PS, QT, RUが1点で交わることを示せ。
(2)$OA^2$+$BC^2$=$OB^2$+$CA^2$=$OC^2$+$AB^2$ のとき、点P, Q, R, S, T, Uが同一球面上にあることを示せ。
(3)(2)において、辺PSが辺OA, BCと直交するとし、辺OA, BCの長さをそれぞれ$a$, $k$とする。点P, Q, R, S, T, Uを頂点とする八面体の体積$V$を$a$と$k$を用いて表せ。
(4)(3)において、$k$=1のとき八面体の体積$V$の最大値を求めよ。
福田のおもしろ数学135〜ガウス記号のついた方程式の解
福田の数学〜早稲田大学2024年理工学部第2問〜重複順列と連立漸化式
単元:
#数列#漸化式#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ $n$を自然数とし、数1, 2, 4を重複を許して$n$個並べてできる$n$桁の自然数全体を考える。そのうちで3の倍数となるものの個数を$a_n$、3で割ると1余るものの個数を$b_n$、3で割ると2余るものの個数を$c_n$とする。
(1)$a_{n+1}$を$b_n$, $c_n$を用いて表せ。同様に$b_{n+1}$を$a_n$, $c_n$を用いて、$c_{n+1}$を$a_n$, $b_n$を用いて表せ。
(2)$a_{n+2}$を$n$と$c_n$を用いて表せ。
(3)$a_{n+6}$を$n$と$a_n$を用いて表せ。
(4)$a_{6m+1} (m=0,1,2,...)$を$m$を用いて表せ。
この動画を見る
$\Large\boxed{2}$ $n$を自然数とし、数1, 2, 4を重複を許して$n$個並べてできる$n$桁の自然数全体を考える。そのうちで3の倍数となるものの個数を$a_n$、3で割ると1余るものの個数を$b_n$、3で割ると2余るものの個数を$c_n$とする。
(1)$a_{n+1}$を$b_n$, $c_n$を用いて表せ。同様に$b_{n+1}$を$a_n$, $c_n$を用いて、$c_{n+1}$を$a_n$, $b_n$を用いて表せ。
(2)$a_{n+2}$を$n$と$c_n$を用いて表せ。
(3)$a_{n+6}$を$n$と$a_n$を用いて表せ。
(4)$a_{6m+1} (m=0,1,2,...)$を$m$を用いて表せ。
福田の中学入試の算数002〜ラサール中学校2005年〜ベンチの数と生徒の数
単元:
#算数(中学受験)#文章題#平均算・過不足算・差集め算・消去算
指導講師:
福田次郎
問題文全文(内容文):
生徒を5人ずつベンチに座らせたところ、ベンチが2つ足りないことがわかりました。そこで、座れなかった生徒を1つずつ、5人ずつ座っているベンチに座らせていきました。すると、(5人ずつ座っているベンチの数):(6人ずつ座っているベンチの数)=5:4になりました。生徒は何人いますか。
この動画を見る
生徒を5人ずつベンチに座らせたところ、ベンチが2つ足りないことがわかりました。そこで、座れなかった生徒を1つずつ、5人ずつ座っているベンチに座らせていきました。すると、(5人ずつ座っているベンチの数):(6人ずつ座っているベンチの数)=5:4になりました。生徒は何人いますか。
福田の数学〜早稲田大学2024年理工学部第1問〜円の接線で出来る図形の面積の最小
単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#微分法と積分法#三角関数とグラフ#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 円$C$:$x^2$+$(y-1)^2$=1 に接する直線で、$x$切片、$y$切片がともに正であるものを$l$とする。$C$と$l$と$x$軸により囲まれた部分の面積を$S$、$C$と$l$と$y$軸により囲まれた部分の面積を$T$とする。$S$+$T$が最小となるとき、$S$-$T$の値を求めよ。
この動画を見る
$\Large\boxed{1}$ 円$C$:$x^2$+$(y-1)^2$=1 に接する直線で、$x$切片、$y$切片がともに正であるものを$l$とする。$C$と$l$と$x$軸により囲まれた部分の面積を$S$、$C$と$l$と$y$軸により囲まれた部分の面積を$T$とする。$S$+$T$が最小となるとき、$S$-$T$の値を求めよ。
福田の中学入試の算数001〜桜蔭中学校2005年〜立体の断面
単元:
#算数(中学受験)#立体図形#立体切断
指導講師:
福田次郎
問題文全文(内容文):
1辺が1 cmの立方体を21個使って下のような立体を作った。平面BFNHで切ったときの真上から見た切り口を①~⑤から選びなさい。またこのときの正面から見た切り口を図示してください。(※動画参照)
この動画を見る
1辺が1 cmの立方体を21個使って下のような立体を作った。平面BFNHで切ったときの真上から見た切り口を①~⑤から選びなさい。またこのときの正面から見た切り口を図示してください。(※動画参照)
福田の数学〜早稲田大学2024年人間科学部第7問〜内サイクロイド曲線の長さ
単元:
#大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{7}$ $n$を2以上の自然数とする。座標平面において、原点を中心とする半径$n$の円$C_n$の内側を半径1の円$C$が滑らずに転がるとき、円$C$上の定点Pの軌跡について考える。時刻$t$において、2つの円$C$と$C_n$は点($n\cos t$, $n\sin t$)で接している。
また、時刻$t$=0 において、点Pは点($n$, 0)にある。$t$が0≦$t$≦$\displaystyle\frac{2\pi}{n}$ の範囲を動くとき、点Pの軌跡の長さを$L_n$とする。このとき、$L_2$=$\boxed{\ \ テ\ \ }$である。また、$\displaystyle\lim_{n \to \infty}L_n$=$\boxed{\ \ ト\ \ }$である。
この動画を見る
$\Large\boxed{7}$ $n$を2以上の自然数とする。座標平面において、原点を中心とする半径$n$の円$C_n$の内側を半径1の円$C$が滑らずに転がるとき、円$C$上の定点Pの軌跡について考える。時刻$t$において、2つの円$C$と$C_n$は点($n\cos t$, $n\sin t$)で接している。
また、時刻$t$=0 において、点Pは点($n$, 0)にある。$t$が0≦$t$≦$\displaystyle\frac{2\pi}{n}$ の範囲を動くとき、点Pの軌跡の長さを$L_n$とする。このとき、$L_2$=$\boxed{\ \ テ\ \ }$である。また、$\displaystyle\lim_{n \to \infty}L_n$=$\boxed{\ \ ト\ \ }$である。
福田のおもしろ数学134〜n個の因数の席の計算
単元:
#数学(中学生)#中3数学#式の計算(展開、因数分解)
指導講師:
福田次郎
問題文全文(内容文):
次の式を計算せよ。$x$≠1 とする。
(1+$x$)(1+$x^2$)(1+$x^4$)...(1+$x^{2^{n-1}}$) を計算せよ。
この動画を見る
次の式を計算せよ。$x$≠1 とする。
(1+$x$)(1+$x^2$)(1+$x^4$)...(1+$x^{2^{n-1}}$) を計算せよ。
福田の数学〜早稲田大学2024年人間科学部第6問〜空間内の折れ線の長さの最小値
単元:
#大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{6}$ 2点A(1,0,1)とB(2, $\sqrt 3$, 1)、および、$xy$平面上を自由に動く2つの点PとQがあり、$l$=AP+BQ+$\displaystyle\frac{\textrm{PQ}}{2}$とする。$l$が最小値をとるとき、点PとQを通る$xy$平面上の直線の方程式は$y$=$\sqrt{\boxed{\ \ ソ\ \ }\ x}$-$\sqrt{\boxed{\ \ タ\ \ }}$ であり、$l$の最小値は$\boxed{\ \ チ\ \ }$+$\sqrt{\boxed{\ \ ツ\ \ }}$ である。
この動画を見る
$\Large\boxed{6}$ 2点A(1,0,1)とB(2, $\sqrt 3$, 1)、および、$xy$平面上を自由に動く2つの点PとQがあり、$l$=AP+BQ+$\displaystyle\frac{\textrm{PQ}}{2}$とする。$l$が最小値をとるとき、点PとQを通る$xy$平面上の直線の方程式は$y$=$\sqrt{\boxed{\ \ ソ\ \ }\ x}$-$\sqrt{\boxed{\ \ タ\ \ }}$ であり、$l$の最小値は$\boxed{\ \ チ\ \ }$+$\sqrt{\boxed{\ \ ツ\ \ }}$ である。