福田次郎

※下の画像部分をクリックすると、先生の紹介ページにリンクします。
福田のおもしろ数学095〜素数が並ぶ数列

単元:
#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
次の数列は全ての項が素数であるかどうか調べよ。
17, 19, 23, 29, 37, 47, 59, 73, 89, ...
この動画を見る
次の数列は全ての項が素数であるかどうか調べよ。
17, 19, 23, 29, 37, 47, 59, 73, 89, ...
福田の数学〜慶應義塾大学2024年看護医療学部第1問(1)〜さいころの目の積が4の倍数になる確率

単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (1)4個のさいころを同時に投げるとき、出た目の積が偶数になる確率は$\boxed{\ \ ア\ \ }$であり、出た目の積が4の倍数になる確率は$\boxed{\ \ イ\ \ }$である。
この動画を見る
$\Large\boxed{1}$ (1)4個のさいころを同時に投げるとき、出た目の積が偶数になる確率は$\boxed{\ \ ア\ \ }$であり、出た目の積が4の倍数になる確率は$\boxed{\ \ イ\ \ }$である。
福田のおもしろ数学094〜平行線と直角二等辺三角形

福田の数学〜慶應義塾大学2024年薬学部第3問〜ウイルスの保有と症状に関する条件付き確率

単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 10万人の集団があり、この集団に対してウイルスXとウイルスYの保有及び症状の有無を調べた。
この集団のうち2万人がウイルスXを保有し、ウイルスX保有者の$\frac{1}{4}$、ウイルスX非保有者の$\frac{1}{4}$がウイルスYを保有していた。ウイルスXが原因でみられる症状は発熱のみ、ウイルスYが原因でみられる症状は腹痛のみであり、ウイルスを保有していなくても発熱や腹痛がみられることがある。
過去の研究から、発熱はウイルスX保有者に確率$\frac{3}{4}$、ウイルスX非保有者に確率$\frac{1}{10}$でみられ、腹痛はウイルスY保有者に確率$\frac{9}{10}$、ウイルスY非保有者に確率$\frac{1}{5}$でみられることがわかっている。なお、発熱と腹痛はそれぞれ独立に発症し互いに影響しないものとする。
(1)この集団から無作為に選ばれた1人がウイルスXを保有していないが発熱がみられる確率は$\boxed{\ \ ト\ \ }$である。
(2)この集団から無作為に選ばれた1人がウイルスYを保有していないが発熱がみられる確率は$\boxed{\ \ ナ\ \ }$である。
(3)この集団から無作為に1人を選んでウイルスの保有および症状の有無を調べて集団に戻す試行を3回繰り返した。
(i)3回の試行で選ばれた人のうち、1人のみに腹痛がみられる確率は$\boxed{\ \ ニ\ \ }$である。
(ii)3回の試行で選ばれた人のうち、1人のみに腹痛がみられるとき、選ばれた人のうち少なくとも1人がウイルスYを保有している確率は$\boxed{\ \ ヌ\ \ }$である。
この動画を見る
$\Large\boxed{3}$ 10万人の集団があり、この集団に対してウイルスXとウイルスYの保有及び症状の有無を調べた。
この集団のうち2万人がウイルスXを保有し、ウイルスX保有者の$\frac{1}{4}$、ウイルスX非保有者の$\frac{1}{4}$がウイルスYを保有していた。ウイルスXが原因でみられる症状は発熱のみ、ウイルスYが原因でみられる症状は腹痛のみであり、ウイルスを保有していなくても発熱や腹痛がみられることがある。
過去の研究から、発熱はウイルスX保有者に確率$\frac{3}{4}$、ウイルスX非保有者に確率$\frac{1}{10}$でみられ、腹痛はウイルスY保有者に確率$\frac{9}{10}$、ウイルスY非保有者に確率$\frac{1}{5}$でみられることがわかっている。なお、発熱と腹痛はそれぞれ独立に発症し互いに影響しないものとする。
(1)この集団から無作為に選ばれた1人がウイルスXを保有していないが発熱がみられる確率は$\boxed{\ \ ト\ \ }$である。
(2)この集団から無作為に選ばれた1人がウイルスYを保有していないが発熱がみられる確率は$\boxed{\ \ ナ\ \ }$である。
(3)この集団から無作為に1人を選んでウイルスの保有および症状の有無を調べて集団に戻す試行を3回繰り返した。
(i)3回の試行で選ばれた人のうち、1人のみに腹痛がみられる確率は$\boxed{\ \ ニ\ \ }$である。
(ii)3回の試行で選ばれた人のうち、1人のみに腹痛がみられるとき、選ばれた人のうち少なくとも1人がウイルスYを保有している確率は$\boxed{\ \ ヌ\ \ }$である。
福田のおもしろ数学093〜条件付きの式の証明

単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$a^2$+$c^2$=1, $b^2$+$d^2$=1, $ab$+$cd$=0 のとき次を示せ。
$a^2$+$b^2$=1, $c^2$+$d^2$=1, $ac$+$bd$=0
この動画を見る
$a^2$+$c^2$=1, $b^2$+$d^2$=1, $ab$+$cd$=0 のとき次を示せ。
$a^2$+$b^2$=1, $c^2$+$d^2$=1, $ac$+$bd$=0
福田の数学〜慶應義塾大学2024年薬学部第2問〜放物線と円が接する条件と面積

単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 原点をOとする$xy$平面上に円$x^2$+$y^2$-$12y$=0 があり、円の中心をPとする。
円周上に動点Qがあり、半直線POを始線とする動径PQの回転角を$\theta$とする。
ただし、$\theta$は$-\frac{\pi}{2}$<$\theta$<$\frac{\pi}{2}$を満たす実数とする。
(1)直線PQを表す方程式は、$\theta$=0 のとき$\boxed{\ \ ソ\ \ }$であり、$\theta$≠0 のとき$\boxed{\ \ タ\ \ }$である。
(2)点Qを通る放物線$y$=$ax^2$+$b$ をおく。点Qにおける放物線の接線は、点Qにおける円の接線と一致する。ただし、$a$, $b$は実数であり、$a$は$a$>0 を満たす。
(i)$\theta$≠0 のとき$a$と$b$を$\theta$で表すと、$a$=$\boxed{\ \ チ\ \ }$, $b$=$\boxed{\ \ ツ\ \ }$ である。
(ii)$\theta$=$-\frac{\pi}{3}$ のとき、直線PQと放物線で囲まれる部分の面積は$\boxed{\ \ テ\ \ }$である。
この動画を見る
$\Large\boxed{2}$ 原点をOとする$xy$平面上に円$x^2$+$y^2$-$12y$=0 があり、円の中心をPとする。
円周上に動点Qがあり、半直線POを始線とする動径PQの回転角を$\theta$とする。
ただし、$\theta$は$-\frac{\pi}{2}$<$\theta$<$\frac{\pi}{2}$を満たす実数とする。
(1)直線PQを表す方程式は、$\theta$=0 のとき$\boxed{\ \ ソ\ \ }$であり、$\theta$≠0 のとき$\boxed{\ \ タ\ \ }$である。
(2)点Qを通る放物線$y$=$ax^2$+$b$ をおく。点Qにおける放物線の接線は、点Qにおける円の接線と一致する。ただし、$a$, $b$は実数であり、$a$は$a$>0 を満たす。
(i)$\theta$≠0 のとき$a$と$b$を$\theta$で表すと、$a$=$\boxed{\ \ チ\ \ }$, $b$=$\boxed{\ \ ツ\ \ }$ である。
(ii)$\theta$=$-\frac{\pi}{3}$ のとき、直線PQと放物線で囲まれる部分の面積は$\boxed{\ \ テ\ \ }$である。
福田のおもしろ数学092〜タイルの敷き詰め

福田の数学〜慶應義塾大学2024年薬学部第1問(6)〜最大値と最小値と中央値の関係

単元:
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (6)偶数個の実数のデータ$x_i$(1≦$i$≦$2n$) があり、このデータの最大値を$A_{2n}$、最小値を$B_{2n}$、中央値を$C_{2n}$とし、$\displaystyle\sum_{i=1}^{2n}x_i$を$S_{2n}$とする。$A_{2n}$, $B_{2n}$, $C_{2n}$の値はわかっていおり、互いに異なる。$n$は$n$>2を満たす整数とする。
(i)$A_8$=6、$B_8$=1、$C_8$=3、であるとき、$S_8$のとりうる値の範囲は$\boxed{\ \ ス\ \ }$である。
(ii)$S_{2n}$のとりうる値の範囲を$A_{2n}$, $B_{2n}$, $C_{2n}$を用いて表すと、$\boxed{\ \ セ\ \ }$である。
この動画を見る
$\Large\boxed{1}$ (6)偶数個の実数のデータ$x_i$(1≦$i$≦$2n$) があり、このデータの最大値を$A_{2n}$、最小値を$B_{2n}$、中央値を$C_{2n}$とし、$\displaystyle\sum_{i=1}^{2n}x_i$を$S_{2n}$とする。$A_{2n}$, $B_{2n}$, $C_{2n}$の値はわかっていおり、互いに異なる。$n$は$n$>2を満たす整数とする。
(i)$A_8$=6、$B_8$=1、$C_8$=3、であるとき、$S_8$のとりうる値の範囲は$\boxed{\ \ ス\ \ }$である。
(ii)$S_{2n}$のとりうる値の範囲を$A_{2n}$, $B_{2n}$, $C_{2n}$を用いて表すと、$\boxed{\ \ セ\ \ }$である。
福田のおもしろ数学091〜定積分と軌跡

単元:
#数Ⅱ#図形と方程式#軌跡と領域#積分とその応用#不定積分#定積分#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\displaystyle\int_x^y(|t|-1)dt$=0 を満たす点($x$,$y$)の軌跡を図示せよ。
この動画を見る
$\displaystyle\int_x^y(|t|-1)dt$=0 を満たす点($x$,$y$)の軌跡を図示せよ。
福田の数学〜慶應義塾大学2024年薬学部第1問(5)〜整数解と素数の性質

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (5)自然数$a$,$b$と素数$p$は等式
$a^4$-$4a^2b$+$4b^3$-$b^4$=$p^2$
を満たす。このとき、数の組($a$,$b$,$p$)を全て求めると($a$,$b$,$p$)$\boxed{\ \ シ\ \ }$である。
この動画を見る
$\Large\boxed{1}$ (5)自然数$a$,$b$と素数$p$は等式
$a^4$-$4a^2b$+$4b^3$-$b^4$=$p^2$
を満たす。このとき、数の組($a$,$b$,$p$)を全て求めると($a$,$b$,$p$)$\boxed{\ \ シ\ \ }$である。
福田のおもしろ数学090〜絶対値の付いた方程式が表す点の軌跡

単元:
#数Ⅰ#数Ⅱ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#図形と方程式#軌跡と領域#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
|$x^2$+$y^2$-1|+|$x^2$-$y^2$|=|$2x^2$-1| を満たす点($x$,$y$)の軌跡を図示せよ。
この動画を見る
|$x^2$+$y^2$-1|+|$x^2$-$y^2$|=|$2x^2$-1| を満たす点($x$,$y$)の軌跡を図示せよ。
福田の数学〜慶應義塾大学2024年薬学部第1問(4)〜空間図形の計量

単元:
#数Ⅰ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (4)Oを原点とする$xyz$空間に点A(0,0,$\sqrt 6$)があり、$y$軸上の点B, C($t$,$\frac{t}{\tan\theta}$,0)を∠OBA=30°,∠BAC=45°,∠ACB=60° を満たすようにおく。ただし$t$は$t$>0 を満たす実数の定数、$\theta$は0°<$\theta$<90°を満たす実数の定数とする。
(i)$|\overrightarrow{BC}|$=$\boxed{\ \ ケ\ \ }$である。
(ii)$|\overrightarrow{OC}|^2$=$\boxed{\ \ コ\ \ }$である。
(iii)$\theta$は$\tan^2\theta$の値が$\boxed{\ \ サ\ \ }$となる実数である。
この動画を見る
$\Large\boxed{1}$ (4)Oを原点とする$xyz$空間に点A(0,0,$\sqrt 6$)があり、$y$軸上の点B, C($t$,$\frac{t}{\tan\theta}$,0)を∠OBA=30°,∠BAC=45°,∠ACB=60° を満たすようにおく。ただし$t$は$t$>0 を満たす実数の定数、$\theta$は0°<$\theta$<90°を満たす実数の定数とする。
(i)$|\overrightarrow{BC}|$=$\boxed{\ \ ケ\ \ }$である。
(ii)$|\overrightarrow{OC}|^2$=$\boxed{\ \ コ\ \ }$である。
(iii)$\theta$は$\tan^2\theta$の値が$\boxed{\ \ サ\ \ }$となる実数である。
福田のおもしろ数学089〜サイン100乗とコサイン100乗の和の最大最小

単元:
#数Ⅱ#三角関数#三角関数とグラフ
指導講師:
福田次郎
問題文全文(内容文):
$\theta$がすべての実数を動くとき$\sin^{100}\theta$+$\cos^{100}\theta$ の最大値、最小値を求めよ。
この動画を見る
$\theta$がすべての実数を動くとき$\sin^{100}\theta$+$\cos^{100}\theta$ の最大値、最小値を求めよ。
福田の数学〜慶應義塾大学2024年薬学部第1問(3)〜領域における最大最小

単元:
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (3)$xy$平面上に連立不等式$x$+$y$≦4, $5x$-$7y$≧-40, $x$-$3y$≦-8 の表す領域Dがある。点P($x$,$y$)がD内を動くとき、$x^2$+$y^2$の最小値は$\boxed{\ \ キ\ \ }$であり、最大値は$\boxed{\ \ ク\ \ }$である。
この動画を見る
$\Large\boxed{1}$ (3)$xy$平面上に連立不等式$x$+$y$≦4, $5x$-$7y$≧-40, $x$-$3y$≦-8 の表す領域Dがある。点P($x$,$y$)がD内を動くとき、$x^2$+$y^2$の最小値は$\boxed{\ \ キ\ \ }$であり、最大値は$\boxed{\ \ ク\ \ }$である。
福田のおもしろ数学088〜三角形の図形問題

福田の数学〜慶應義塾大学2024年薬学部第1問(2)〜3次関数の増減と方程式の解の個数

単元:
#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (2)$a$,$b$,$c$を実数とし、実数$x$の関数$f(x)$を$f(x)$=$x^3$+$ax^2$+$bx$+$c$ とおく。
$f(x)$は$x$=-1で極値3をとり、方程式$f(x)$=0は$x$=-2を解にもつ。
(i)$a$=$\boxed{\ \ ウ\ \ }$, $b$=$\boxed{\ \ エ\ \ }$, $c$=$\boxed{\ \ オ\ \ }$である。
(ii)Kを実数とする。方程式$f(x)$=$4x$+K が持つ異なる実数解の個数が2個となるとき、Kの値は$\boxed{\ \ カ\ \ }$である。
この動画を見る
$\Large\boxed{1}$ (2)$a$,$b$,$c$を実数とし、実数$x$の関数$f(x)$を$f(x)$=$x^3$+$ax^2$+$bx$+$c$ とおく。
$f(x)$は$x$=-1で極値3をとり、方程式$f(x)$=0は$x$=-2を解にもつ。
(i)$a$=$\boxed{\ \ ウ\ \ }$, $b$=$\boxed{\ \ エ\ \ }$, $c$=$\boxed{\ \ オ\ \ }$である。
(ii)Kを実数とする。方程式$f(x)$=$4x$+K が持つ異なる実数解の個数が2個となるとき、Kの値は$\boxed{\ \ カ\ \ }$である。
福田のおもしろ数学087〜絶対値の付いた2変数の方程式の解

単元:
#数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$|x-1|$+$|x-2|$=$|y-1|$+$|y-2|$ を満たす点($x$,$y$)の集合を図示せよ。
この動画を見る
$|x-1|$+$|x-2|$=$|y-1|$+$|y-2|$ を満たす点($x$,$y$)の集合を図示せよ。
福田の数学〜慶應義塾大学2024年薬学部第1問(1)〜等差数列と等比中項

単元:
#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (1)$n$を自然数とする。数列$\left\{a_n\right\}$は初項が25, 公差が0でない等差数列であり、3つの項$a_8$, $a_9$, $a_{10}$を
$a_9$, $a_{10}$, $a_8$
の順に並べると等比数列になる。この数列の初項から第$n$項までの和を$S_n$とする。
(i)一般項$a_n$を$n$の式で表すと$a_n$=$\boxed{\ \ ア\ \ }$である。
(ii)不等式$S_n$<0 を満たす最小の$n$の値は$\boxed{\ \ イ\ \ }$である。
この動画を見る
$\Large\boxed{1}$ (1)$n$を自然数とする。数列$\left\{a_n\right\}$は初項が25, 公差が0でない等差数列であり、3つの項$a_8$, $a_9$, $a_{10}$を
$a_9$, $a_{10}$, $a_8$
の順に並べると等比数列になる。この数列の初項から第$n$項までの和を$S_n$とする。
(i)一般項$a_n$を$n$の式で表すと$a_n$=$\boxed{\ \ ア\ \ }$である。
(ii)不等式$S_n$<0 を満たす最小の$n$の値は$\boxed{\ \ イ\ \ }$である。
福田のおもしろ数学086〜1分チャレンジ〜正三角形2個で作る核を求めよう

福田の数学〜東京工業大学2024年理系第5問〜2次方程式の解が1のn乗根である条件

単元:
#複素数平面#複素数平面#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 整数の組($a$,$b$)に対して2次式$f(x)$=$x^2$+$ax$+$b$ を考える。方程式$f(x)$=0 の複素数の範囲のすべての解$\alpha$に対して$\alpha^n$=1 となる正の整数$n$が存在するような組($a$,$b$)をすべて求めよ。
この動画を見る
$\Large\boxed{5}$ 整数の組($a$,$b$)に対して2次式$f(x)$=$x^2$+$ax$+$b$ を考える。方程式$f(x)$=0 の複素数の範囲のすべての解$\alpha$に対して$\alpha^n$=1 となる正の整数$n$が存在するような組($a$,$b$)をすべて求めよ。
福田のおもしろ数学085〜不等式を満たす自然数の組合せ

単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$a$<$b$<$c$を満たす正の整数の組($a$,$b$,$c$)であって、
$a^2$-$20005a$>$b^2$-$20005b$>$c^2$-$20005c$
が成り立つものはいくつあるか。
この動画を見る
$a$<$b$<$c$を満たす正の整数の組($a$,$b$,$c$)であって、
$a^2$-$20005a$>$b^2$-$20005b$>$c^2$-$20005c$
が成り立つものはいくつあるか。
福田の数学〜東京工業大学2024年理系第4問〜表の出る確率が異なるコインを投げたときの表が奇数枚出る確率と極限

単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#関数と極限#数列の極限#関数の極限#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ $n$を正の整数とし、$C_1$,...,$C_n$を$n$枚の硬貨とする。各$k$=1,...,$n$に対し、硬貨$C_k$を投げて表が出る確率を$p_k$、裏が出る確率を1-$p_k$とする。この$n$枚の硬貨を同時に投げ、表が出た硬貨の枚数が奇数であれば成功、というゲームを考える。
(1)$p_k$=$\frac{1}{3}$ ($k$=1,...,$n$)のとき、このゲームで成功する確率$X_n$を求めよ。
(2)$p_k$=$\frac{1}{2(k+1)}$ ($k$=1,...,$n$)のとき、このゲームで成功する確率$Y_n$を求めよ。
(3)$n$=$3m$($m$は正の定数)で$k$=1,...,$3m$に対して
$p_k$=$\left\{\begin{array}{1}
\frac{1}{3m} (k=1,...,m) \\
\frac{2}{3m} (k=m+1,...,2m)\\
\frac{1}{m} (k=2m+1,...,3m)\\
\end{array}\right.$
とする。このゲームで成功する確率を$Z_{3m}$とするとき、$\displaystyle\lim_{m \to \infty}Z_{3m}$ を求めよ。
この動画を見る
$\Large\boxed{4}$ $n$を正の整数とし、$C_1$,...,$C_n$を$n$枚の硬貨とする。各$k$=1,...,$n$に対し、硬貨$C_k$を投げて表が出る確率を$p_k$、裏が出る確率を1-$p_k$とする。この$n$枚の硬貨を同時に投げ、表が出た硬貨の枚数が奇数であれば成功、というゲームを考える。
(1)$p_k$=$\frac{1}{3}$ ($k$=1,...,$n$)のとき、このゲームで成功する確率$X_n$を求めよ。
(2)$p_k$=$\frac{1}{2(k+1)}$ ($k$=1,...,$n$)のとき、このゲームで成功する確率$Y_n$を求めよ。
(3)$n$=$3m$($m$は正の定数)で$k$=1,...,$3m$に対して
$p_k$=$\left\{\begin{array}{1}
\frac{1}{3m} (k=1,...,m) \\
\frac{2}{3m} (k=m+1,...,2m)\\
\frac{1}{m} (k=2m+1,...,3m)\\
\end{array}\right.$
とする。このゲームで成功する確率を$Z_{3m}$とするとき、$\displaystyle\lim_{m \to \infty}Z_{3m}$ を求めよ。
福田のおもしろ数学084〜85をいくつかの和で一意的に表す

単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
85は7つの数
1,2,4,8,16,32,64
のいくつかの和としてただ1通りに表されることを示せ。
この動画を見る
85は7つの数
1,2,4,8,16,32,64
のいくつかの和としてただ1通りに表されることを示せ。
福田の数学〜東京工業大学2024年理系第3問〜点列と漸化式の極限

単元:
#大学入試過去問(数学)#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数B#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ $xy$平面上に、点A($a$,0), B(0,$b$), C($-a$,0)(ただし0<$a$<$b$)をとる。点A,Bを通る直線を$l$とし、点Cを通り線分BCに垂直な直線を$k$とする。さらに、点Aを通り$y$軸に平行な直線と直線$k$との交点を$C_1$とし、点$C_1$を通り、$x$軸に平行な直線と直線$l$との交点を$A_1$とする。以下、$n$=1,2,3,...に対して、点$A_n$を通り$y$軸に平行な直線と直線$k$との交点を$C_{n+1}$、点$C_{n+1}$を通り$x$軸に平行な直線と直線$l$との交点を$A_{n+1}$とする。
(1)点$A_n$, $C_n$の座標を求めよ。
(2)△$CBA_n$の面積$S_n$を求めよ。
(3)$\displaystyle\lim_{n \to \infty}\frac{BA_n}{BC}$を求めよ。
この動画を見る
$\Large\boxed{3}$ $xy$平面上に、点A($a$,0), B(0,$b$), C($-a$,0)(ただし0<$a$<$b$)をとる。点A,Bを通る直線を$l$とし、点Cを通り線分BCに垂直な直線を$k$とする。さらに、点Aを通り$y$軸に平行な直線と直線$k$との交点を$C_1$とし、点$C_1$を通り、$x$軸に平行な直線と直線$l$との交点を$A_1$とする。以下、$n$=1,2,3,...に対して、点$A_n$を通り$y$軸に平行な直線と直線$k$との交点を$C_{n+1}$、点$C_{n+1}$を通り$x$軸に平行な直線と直線$l$との交点を$A_{n+1}$とする。
(1)点$A_n$, $C_n$の座標を求めよ。
(2)△$CBA_n$の面積$S_n$を求めよ。
(3)$\displaystyle\lim_{n \to \infty}\frac{BA_n}{BC}$を求めよ。
福田のおもしろ数学083〜長方形内の正方形の一辺の長さ

単元:
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
指導講師:
福田次郎
問題文全文(内容文):
正方形の一辺の長さを求めよ。(※動画参照)
この動画を見る
正方形の一辺の長さを求めよ。(※動画参照)
福田の数学〜東京工業大学2024年理系第2問〜関数方程式と曲線の長さ

単元:
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 実数全体を定義域にもつ微分可能な関数$f(t)$, $g(t)$が次の6つの条件を満たしているとする。
$f'(t)$=$-f(t)g(t)$, $g'(t)$=$\left\{f(t)\right\}^2$,
$f(t)$>0, $|g(t)|$<1, $f(0)$=1, $g(0)$=0
このとき $p(t)$=$\left\{f(t)\right\}^2$+$\left\{g(t)\right\}^2$, $q(t)$=$\log\frac{1+g(t)}{1-g(t)}$ とおく。
(1)$p'(t)$を求めよ。
(2)$q'(t)$は定数関数であることを示せ。
(3)$\displaystyle\lim_{t \to \infty}g(t)$を求めよ。
(4)$f(T)$=$g(T)$となる正の実数$T$に対して、媒介変数表示された平面曲線($x$,$y$)=($f(t)$,$g(t)$) (0≦$t$≦$T$)の長さを求めよ。
この動画を見る
$\Large\boxed{2}$ 実数全体を定義域にもつ微分可能な関数$f(t)$, $g(t)$が次の6つの条件を満たしているとする。
$f'(t)$=$-f(t)g(t)$, $g'(t)$=$\left\{f(t)\right\}^2$,
$f(t)$>0, $|g(t)|$<1, $f(0)$=1, $g(0)$=0
このとき $p(t)$=$\left\{f(t)\right\}^2$+$\left\{g(t)\right\}^2$, $q(t)$=$\log\frac{1+g(t)}{1-g(t)}$ とおく。
(1)$p'(t)$を求めよ。
(2)$q'(t)$は定数関数であることを示せ。
(3)$\displaystyle\lim_{t \to \infty}g(t)$を求めよ。
(4)$f(T)$=$g(T)$となる正の実数$T$に対して、媒介変数表示された平面曲線($x$,$y$)=($f(t)$,$g(t)$) (0≦$t$≦$T$)の長さを求めよ。
福田のおもしろ数学082〜正方形の面積は

単元:
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
指導講師:
福田次郎
問題文全文(内容文):
正方形ABCDの面積を求めよ。(※動画参照)
この動画を見る
正方形ABCDの面積を求めよ。(※動画参照)
福田の数学〜京都大学2024年文系第5問〜放物線の一部と直線が異なる2つの共有点をもつ条件

単元:
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 関数$y$=$x^2$-$4x$+5 のグラフの$x$>1 の部分をCとする。このとき、下の条件を満たすような正の実数$a$,$b$について、座標平面の点($a$,$b$)が動く領域の面積を求めよ。
「Cと直線$y$=$ax$+$b$ は二つの異なる共有点をもつ。」
この動画を見る
$\Large\boxed{5}$ 関数$y$=$x^2$-$4x$+5 のグラフの$x$>1 の部分をCとする。このとき、下の条件を満たすような正の実数$a$,$b$について、座標平面の点($a$,$b$)が動く領域の面積を求めよ。
「Cと直線$y$=$ax$+$b$ は二つの異なる共有点をもつ。」
福田のおもしろ数学081〜京大の珍問奇問〜分母の有理化

単元:
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
指導講師:
福田次郎
問題文全文(内容文):
$\displaystyle\frac{55}{2\sqrt[3]{9}+\sqrt[3]{3}+5}$ を有理化せよ。
この動画を見る
$\displaystyle\frac{55}{2\sqrt[3]{9}+\sqrt[3]{3}+5}$ を有理化せよ。
福田の数学〜京都大学2024年文系第4問〜8進法9進法10進法で表して桁数の変わらない数

単元:
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ ある自然数を八進法、九進法、十進法でそれぞれ表したとき、桁数がすべて同じになった。このような自然数で最大のものを求めよ。ただし、必要なら次を用いてもよい。
0.3010<$\log_{10}2$<0.3011, 0.4771<$\log_{10}3$<0.4772
この動画を見る
$\Large\boxed{4}$ ある自然数を八進法、九進法、十進法でそれぞれ表したとき、桁数がすべて同じになった。このような自然数で最大のものを求めよ。ただし、必要なら次を用いてもよい。
0.3010<$\log_{10}2$<0.3011, 0.4771<$\log_{10}3$<0.4772