ますただ
ますただ
※下の画像部分をクリックすると、先生の紹介ページにリンクします。
20年5月数検準1級1次試験(楕円)

単元:
#数Ⅱ#数学検定・数学甲子園・数学オリンピック等#図形と方程式#円と方程式#数学検定#数学検定準1級#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\boxed{6}$
2点$A(0,-3),B(0,1)$から距離の和が6である楕円の方程式を求めよ.
20年5月数検準1級1次試験(楕円)過去問
この動画を見る
$\boxed{6}$
2点$A(0,-3),B(0,1)$から距離の和が6である楕円の方程式を求めよ.
20年5月数検準1級1次試験(楕円)過去問
20年5月数検準1級1次試験(楕円)

単元:
#数学検定・数学甲子園・数学オリンピック等#平面上の曲線#2次曲線#数学検定#数学検定準1級#数学(高校生)#数C
指導講師:
ますただ
問題文全文(内容文):
6⃣
2点A(0,-3)、B(0,1)から距離の和が6である楕円の方程式を求めよ
この動画を見る
6⃣
2点A(0,-3)、B(0,1)から距離の和が6である楕円の方程式を求めよ
20年5月数検準1級1次試験(極限)

単元:
#数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#平均変化率・極限・導関数#数学検定#数学検定準1級#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\boxed{7}$
$\displaystyle \lim_{n\to\infty}(\sqrt{4n^2+7n}-2\sqrt{n^2+2n})$
これを解け.
20年5月数検準1級1次試験(極限)過去問
この動画を見る
$\boxed{7}$
$\displaystyle \lim_{n\to\infty}(\sqrt{4n^2+7n}-2\sqrt{n^2+2n})$
これを解け.
20年5月数検準1級1次試験(極限)過去問
20年5月数検準1級1次試験(極限)

単元:
#数学検定・数学甲子園・数学オリンピック等#関数と極限#数列の極限#数学検定#数学検定準1級#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
7⃣$\displaystyle \lim_{ n \to \infty } (\sqrt{4n^2+7n} - 2\sqrt{n^2+2n})$
この動画を見る
7⃣$\displaystyle \lim_{ n \to \infty } (\sqrt{4n^2+7n} - 2\sqrt{n^2+2n})$
20年5月数学検定準1級1次試験(複素数)

単元:
#数Ⅱ#数学検定・数学甲子園・数学オリンピック等#複素数と方程式#複素数#数学検定#数学検定準1級#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\boxed{4}$
$\alpha=(-1+i)(1-\sqrt3 i)$
(1)$\vert \alpha \vert $を求めよ.
(2)$arg \alpha$を求めよ.
$0\leqq arg \alpha \lt 2\pi$
20年5月数学検定準1級1次試験(複素数)過去問
この動画を見る
$\boxed{4}$
$\alpha=(-1+i)(1-\sqrt3 i)$
(1)$\vert \alpha \vert $を求めよ.
(2)$arg \alpha$を求めよ.
$0\leqq arg \alpha \lt 2\pi$
20年5月数学検定準1級1次試験(複素数)過去問
20年5月数学検定準1級1次試験(複素数)

単元:
#数学検定・数学甲子園・数学オリンピック等#複素数平面#複素数平面#数学検定#数学検定準1級#数学(高校生)#数C
指導講師:
ますただ
問題文全文(内容文):
4⃣
$α=(-1+i)(i-\sqrt 3 i)$
(1)|α|を求めよ
(2)arg αを求めよ $0 \leqq arg α < 2\pi$
この動画を見る
4⃣
$α=(-1+i)(i-\sqrt 3 i)$
(1)|α|を求めよ
(2)arg αを求めよ $0 \leqq arg α < 2\pi$
20年5月数学検定準1級1次試験(円の方程式)

単元:
#数Ⅱ#数学検定・数学甲子園・数学オリンピック等#図形と方程式#円と方程式#数学検定#数学検定準1級#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\boxed{2}$
円$C_1$の中心は$(-6,2)$で直線$\ell:3x-4y+1=0$に接する.
このとき円$C_1$が$x$軸から切り取る線分の長さ$\ell^1$を求めよ.
20年5月数学検定準1級1次試験(円の方程式)過去問
この動画を見る
$\boxed{2}$
円$C_1$の中心は$(-6,2)$で直線$\ell:3x-4y+1=0$に接する.
このとき円$C_1$が$x$軸から切り取る線分の長さ$\ell^1$を求めよ.
20年5月数学検定準1級1次試験(円の方程式)過去問
20年5月数学検定準1級1次試験(円の方程式)

単元:
#数Ⅱ#数学検定・数学甲子園・数学オリンピック等#図形と方程式#数学検定#数学検定準1級#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
2⃣円$C_1$の中心は(-6,2)で直線$l:3x-4y+1=0$に接する。
このとき円$C_1$がx軸から切り取る線分の長さl'を求めよ。
この動画を見る
2⃣円$C_1$の中心は(-6,2)で直線$l:3x-4y+1=0$に接する。
このとき円$C_1$がx軸から切り取る線分の長さl'を求めよ。
20年5月数学検定準1級1次試験(積分)

単元:
#数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#数学検定#数学検定準1級#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\boxed{5}$
(1)$\displaystyle \int_{}^{}\dfrac{dx}{\sin 2x}$
(2)$\displaystyle \int_{\frac{\pi}{4}}^{\frac{\pi}{3}}\dfrac{dx}{\sin 2x}$
20年5月数学検定準1級1次試験(積分)過去問
この動画を見る
$\boxed{5}$
(1)$\displaystyle \int_{}^{}\dfrac{dx}{\sin 2x}$
(2)$\displaystyle \int_{\frac{\pi}{4}}^{\frac{\pi}{3}}\dfrac{dx}{\sin 2x}$
20年5月数学検定準1級1次試験(積分)過去問
20年5月数学検定準1級1次試験(積分)

単元:
#数学検定・数学甲子園・数学オリンピック等#積分とその応用#不定積分#定積分#数学検定#数学検定準1級#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
5⃣
(1)$\int \frac{dx}{sin2x}$
(2)$\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{dx}{sin2x}$
この動画を見る
5⃣
(1)$\int \frac{dx}{sin2x}$
(2)$\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{dx}{sin2x}$
20年5月数学検定準1級1次試験(三角関数)

単元:
#数Ⅱ#数学検定・数学甲子園・数学オリンピック等#三角関数#数学検定#数学検定準1級#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\boxed{1}$
$0\leqq \theta \lt 2\pi$
$\sqrt2 \cos \theta -\sqrt2 \sin \theta=1$
20年5月数学検定準1級1次試験(三角関数)過去問
この動画を見る
$\boxed{1}$
$0\leqq \theta \lt 2\pi$
$\sqrt2 \cos \theta -\sqrt2 \sin \theta=1$
20年5月数学検定準1級1次試験(三角関数)過去問
20年5月数学検定準1級1次試験(三角関数)

単元:
#数Ⅱ#数学検定・数学甲子園・数学オリンピック等#三角関数#三角関数とグラフ#数学検定#数学検定準1級#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
1⃣ $0 \leqq θ < 2\pi$
$\sqrt 2 cosθ - \sqrt 2 sinθ = 1$
この動画を見る
1⃣ $0 \leqq θ < 2\pi$
$\sqrt 2 cosθ - \sqrt 2 sinθ = 1$
20年5月数学検定準1級1次試験(数列)

単元:
#数学検定・数学甲子園・数学オリンピック等#数列#数列とその和(等差・等比・階差・Σ)#数学検定#数学検定準1級#数学(高校生)#数B
指導講師:
ますただ
問題文全文(内容文):
$\boxed{3}$
$3a_n-2s_n=3^n(s_n=a_1+a_2+・・・+a_n)$
20年5月数学検定準1級1次試験(数列)過去問
この動画を見る
$\boxed{3}$
$3a_n-2s_n=3^n(s_n=a_1+a_2+・・・+a_n)$
20年5月数学検定準1級1次試験(数列)過去問
20年5月数学検定準1級1次試験(数列)

単元:
#数学検定・数学甲子園・数学オリンピック等#数列#漸化式#数学検定#数学検定準1級#数学(高校生)#数B
指導講師:
ますただ
問題文全文(内容文):
3⃣$3a_n-2S_n=3^n$
$(S_n=a_1+a_2+\cdots+a_n)$
この動画を見る
3⃣$3a_n-2S_n=3^n$
$(S_n=a_1+a_2+\cdots+a_n)$
19神奈川県教員採用試験(数学:整数問題)

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#その他#数学(高校生)#その他
指導講師:
ますただ
問題文全文(内容文):
$x,y \leftarrow in$
$\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6},x+y$の最大値を求めよ.
19神奈川県教員採用試験(数学:整数問題)過去問
この動画を見る
$x,y \leftarrow in$
$\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6},x+y$の最大値を求めよ.
19神奈川県教員採用試験(数学:整数問題)過去問
19神奈川県教員採用試験(数学:整数問題)

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#その他#数学(高校生)#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
$x,y \in \mathbb{ N }$
$\frac{1}{x}+\frac{1}{y} = \frac{1}{6} $ , x+yの最大値を求めよ。
この動画を見る
$x,y \in \mathbb{ N }$
$\frac{1}{x}+\frac{1}{y} = \frac{1}{6} $ , x+yの最大値を求めよ。
19神奈川県教員採用試験(数学:面積の最小値)

単元:
#数Ⅱ#微分法と積分法#面積、体積#その他#数学(高校生)#その他
指導講師:
ますただ
問題文全文(内容文):
$y=x^2-5x+4$と$y=m(n-2)$で囲まれた面積の最小値とそのときの$m$の値を求めよ.
19神奈川県教員採用試験(数学:面積の最小値)過去問
この動画を見る
$y=x^2-5x+4$と$y=m(n-2)$で囲まれた面積の最小値とそのときの$m$の値を求めよ.
19神奈川県教員採用試験(数学:面積の最小値)過去問
19神奈川県教員採用試験(数学:面積の最小値)

単元:
#数Ⅱ#微分法と積分法#その他#不定積分・定積分#数学(高校生)#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
$y=x^2-5x+4$と$y=m(x-2)$で囲まれた面積の最小値とそのときのmの値を求めよ。
この動画を見る
$y=x^2-5x+4$と$y=m(x-2)$で囲まれた面積の最小値とそのときのmの値を求めよ。
19神奈川県教員採用試験(数学:三角形の最小値)

単元:
#数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#その他#数学(高校生)#その他
指導講師:
ますただ
問題文全文(内容文):
$y=x^2+2$上の点$P$と原点$O$と点$A(3,3)$で$\triangle OAP$の面積の最小値を求めよ.
19神奈川県教員採用試験(数学:三角形の最小値)過去問
この動画を見る
$y=x^2+2$上の点$P$と原点$O$と点$A(3,3)$で$\triangle OAP$の面積の最小値を求めよ.
19神奈川県教員採用試験(数学:三角形の最小値)過去問
19神奈川県教員採用試験(数学:三角形の最小値)

単元:
#数Ⅰ#2次関数#2次関数とグラフ#その他#数学(高校生)#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
$y=x^2+2$上の点Pと原点Oと点A(3,3)で△OAPの面積の最小値を求めよ。
この動画を見る
$y=x^2+2$上の点Pと原点Oと点A(3,3)で△OAPの面積の最小値を求めよ。
19神奈川県教員採用試験(数学:関数の最大値)

単元:
#その他#その他
指導講師:
ますただ
問題文全文(内容文):
$y=-(x^2+2x)^2+4(x^2+2x)+\dfrac{7}{2}(-2\leqq x\leqq 1)$の値域に含まれる最大の整数を求めよ.
19神奈川県教員採用試験(数学:関数の最大値)過去問
この動画を見る
$y=-(x^2+2x)^2+4(x^2+2x)+\dfrac{7}{2}(-2\leqq x\leqq 1)$の値域に含まれる最大の整数を求めよ.
19神奈川県教員採用試験(数学:関数の最大値)過去問
19神奈川県教員採用試験(数学:関数の最大値)

単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#2次関数とグラフ#その他#数学(高校生)#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
$y=-(x^2+2x)^2+4(x^2+2x)+\frac{7}{2} \quad (-2 \leqq x \leqq 1)$の値域に含まれる最大の整数を求めよ。
この動画を見る
$y=-(x^2+2x)^2+4(x^2+2x)+\frac{7}{2} \quad (-2 \leqq x \leqq 1)$の値域に含まれる最大の整数を求めよ。
18神奈川県採用試験(数学:複素数)

単元:
#その他#その他
指導講師:
ますただ
問題文全文(内容文):
$z=\dfrac{\sqrt3 -i}{\sqrt2+\sqrt2 i},z^{50}$を求めよ.
18神奈川県採用試験(数学:複素数)過去問
この動画を見る
$z=\dfrac{\sqrt3 -i}{\sqrt2+\sqrt2 i},z^{50}$を求めよ.
18神奈川県採用試験(数学:複素数)過去問
18神奈川県採用試験(数学:複素数)

単元:
#数Ⅱ#複素数平面#三角関数#三角関数とグラフ#複素数平面#数学(高校生)#数C
指導講師:
ますただ
問題文全文(内容文):
$Z=\frac{\sqrt 3 - i}{\sqrt 2 + \sqrt 2 i } , Z^{50}$を求めよ。
この動画を見る
$Z=\frac{\sqrt 3 - i}{\sqrt 2 + \sqrt 2 i } , Z^{50}$を求めよ。
18神奈川県教員採用試験(数学:微分)

単元:
#その他#その他
指導講師:
ますただ
問題文全文(内容文):
$\vert x^3-3x^2-9n \vert -m=0$が異なる実数解を4個もつように$m$の値の範囲を求めよ.
18神奈川県教員採用試験(数学:微分)過去問
この動画を見る
$\vert x^3-3x^2-9n \vert -m=0$が異なる実数解を4個もつように$m$の値の範囲を求めよ.
18神奈川県教員採用試験(数学:微分)過去問
18神奈川県教員採用試験(数学:微分)

単元:
#数Ⅰ#数Ⅱ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#微分法と積分法#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$|x^3-3x^2-9x|-m=0$が異なる定数解を4個もつようにmの値の範囲を求めよ。
この動画を見る
$|x^3-3x^2-9x|-m=0$が異なる定数解を4個もつようにmの値の範囲を求めよ。
18神奈川県教員採用試験(数学:対数)

単元:
#その他#その他
指導講師:
ますただ
問題文全文(内容文):
$\alpha=5^{\log_{25}3}+1$のとき,$4^{\log_2 \alpha}$の値を求めよ.
18神奈川県教員採用試験(数学:対数)過去問
この動画を見る
$\alpha=5^{\log_{25}3}+1$のとき,$4^{\log_2 \alpha}$の値を求めよ.
18神奈川県教員採用試験(数学:対数)過去問
18神奈川県教員採用試験(数学:対数)

単元:
#数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$α= 5^{log_{25}^3}+1$のとき$4^{log_2^α}$の値を求めよ。
この動画を見る
$α= 5^{log_{25}^3}+1$のとき$4^{log_2^α}$の値を求めよ。
18神奈川県教員採用試験(数学:数列)

単元:
#その他#その他
指導講師:
ますただ
問題文全文(内容文):
$ S_n=\displaystyle \sum_{k=1}^{n} a_n$
$ S_n=2a_n+4n-3(n=1,2,3・・・)$のとき$a_n$を求めよ.
18神奈川県教員採用試験(数学:数列)過去問
この動画を見る
$ S_n=\displaystyle \sum_{k=1}^{n} a_n$
$ S_n=2a_n+4n-3(n=1,2,3・・・)$のとき$a_n$を求めよ.
18神奈川県教員採用試験(数学:数列)過去問
18神奈川県教員採用試験(数学:数列)

単元:
#数列#数列とその和(等差・等比・階差・Σ)#漸化式#数学(高校生)#数B
指導講師:
ますただ
問題文全文(内容文):
$S_n = \displaystyle \sum_{k=1}^n a_k$
$S_n = 2a_n+4n -3 (n=1,2,3,\cdots)$ のとき$a_n$を求めよ。
この動画を見る
$S_n = \displaystyle \sum_{k=1}^n a_k$
$S_n = 2a_n+4n -3 (n=1,2,3,\cdots)$ のとき$a_n$を求めよ。
