理数個別チャンネル
※下の画像部分をクリックすると、先生の紹介ページにリンクします。
【26日目】毎日3分多義語~入試に出るのは「じゃない方」の意味~【毎朝7時投稿】
単元:
#英語(高校生)#会話文・イディオム・構文・英単語#英単語
指導講師:
理数個別チャンネル
問題文全文(内容文):
<今日の単語>
book
bow
bat
case
capital
drop
fire
firm
gift
hot
出典:島田先生の記憶
この動画を見る
<今日の単語>
book
bow
bat
case
capital
drop
fire
firm
gift
hot
出典:島田先生の記憶
理数個別チャンネルのエンディングテーマ #shorts #frozengap #extra
単元:
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
指導講師:
理数個別チャンネル
問題文全文(内容文):
理数個別チャンネルのエンディングテーマです!
この動画を見る
理数個別チャンネルのエンディングテーマです!
【高校数学】毎日積分68日目~47都道府県制覇への道~【⑫香川】【毎日17時投稿】
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#香川大学#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
$-1<x<1$を定義域とする関数$\displaystyle f(x)=\frac{1}{1-x^2}$について、次の問に答えよ。
(1)原点から曲線$C:y=f(x)$に引いた2本の接線それぞれの方程式を求めよ。
(2)$C$と(1)の2本の接線で囲まれてできる図形$D$の面積を求めよ。
(3)$D$を$y$軸のまわりに1回転させてできる立体の体積を求めよ。
【香川大学 2023】
この動画を見る
$-1<x<1$を定義域とする関数$\displaystyle f(x)=\frac{1}{1-x^2}$について、次の問に答えよ。
(1)原点から曲線$C:y=f(x)$に引いた2本の接線それぞれの方程式を求めよ。
(2)$C$と(1)の2本の接線で囲まれてできる図形$D$の面積を求めよ。
(3)$D$を$y$軸のまわりに1回転させてできる立体の体積を求めよ。
【香川大学 2023】
【25日目】毎日3分多義語:島田先生に抜き打ちテスト⑥【毎朝7時投稿】#英単語 #毎日3分多義語 #shorts
単元:
#英語(高校生)#会話文・イディオム・構文・英単語#英単語
指導講師:
理数個別チャンネル
問題文全文(内容文):
mint
organ
present
pretty
出典:島田先生の記憶
この動画を見る
mint
organ
present
pretty
出典:島田先生の記憶
大事なお知らせがあります。
単元:
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
指導講師:
理数個別チャンネル
問題文全文(内容文):
大事なお知らせがあります。
この動画を見る
大事なお知らせがあります。
【高校数学】毎日積分67日目~47都道府県制覇への道~【⑪徳島】【毎日17時投稿】
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#徳島大学#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
$\displaystyle f(x)=\frac{2x^2-x-1}{x^2+2x+2}$とする。
(1)$\displaystyle\lim_{x\to -\infty} f(x)$および$\displaystyle \lim_{x\to \infty} f(x)$を求めよ。
(2)導関数$f'(x)$を求めよ。
(3)関数$y=f(x)$の最大値と最小値を求めよ。
(4)曲線$y=f(x)$と$x$軸で囲まれた部分の面積を求めよ。
【徳島大学 2023】
この動画を見る
$\displaystyle f(x)=\frac{2x^2-x-1}{x^2+2x+2}$とする。
(1)$\displaystyle\lim_{x\to -\infty} f(x)$および$\displaystyle \lim_{x\to \infty} f(x)$を求めよ。
(2)導関数$f'(x)$を求めよ。
(3)関数$y=f(x)$の最大値と最小値を求めよ。
(4)曲線$y=f(x)$と$x$軸で囲まれた部分の面積を求めよ。
【徳島大学 2023】
【24日目】毎日3分多義語:島田先生に抜き打ちテスト⑤【毎朝7時投稿】#英単語 #毎日3分多義語 #shorts
単元:
#英語(高校生)#会話文・イディオム・構文・英単語#英単語
指導講師:
理数個別チャンネル
問題文全文(内容文):
<今日の単語>
match
mean
mint
出典:島田先生の記憶
この動画を見る
<今日の単語>
match
mean
mint
出典:島田先生の記憶
【高校数学】毎日積分66日目~47都道府県制覇への道~【⑩愛媛】【毎日17時投稿】
単元:
#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#愛媛大学#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
$\int_{-\frac{π}{3}}^{\frac{π}{3}}(x+tanx)dx=[オ]$であり、$\int_{-\frac{π}{3}}^{\frac{π}{3}}|x+tanx|dx=[カ]$である。
関数$f(x)=x,g(x)=2xsinx$について、$f'(0)=1$であり、$g'(0)=[キ]$である。また、$0≦x≦\frac{π}{6}$において、直線$y=f(x)$と曲線$y=g(x)$とで囲まれた図形の面積は[ク]である。
【愛媛大学 2023】
この動画を見る
$\int_{-\frac{π}{3}}^{\frac{π}{3}}(x+tanx)dx=[オ]$であり、$\int_{-\frac{π}{3}}^{\frac{π}{3}}|x+tanx|dx=[カ]$である。
関数$f(x)=x,g(x)=2xsinx$について、$f'(0)=1$であり、$g'(0)=[キ]$である。また、$0≦x≦\frac{π}{6}$において、直線$y=f(x)$と曲線$y=g(x)$とで囲まれた図形の面積は[ク]である。
【愛媛大学 2023】
【23日目】毎日3分多義語:島田先生に抜き打ちテスト④【毎朝7時投稿】#英単語 #毎日3分多義語 #shorts
単元:
#英語(高校生)#会話文・イディオム・構文・英単語#英単語
指導講師:
理数個別チャンネル
問題文全文(内容文):
<今日の単語>
interest
jam
key
light
出典:島田先生の記憶
この動画を見る
<今日の単語>
interest
jam
key
light
出典:島田先生の記憶
【高校数学】毎日積分65日目~47都道府県制覇への道~【⑨高知】【毎日17時投稿】
単元:
#数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
(1)すべての実数xに対して
$\sin 3x=3\sin x-4\sin^3x$
$\cos 3x=-3\cos x+4\cos^3x$
が成り立つことを、加法定理と2倍角の公式を用いて示せ。
(2)実数$\theta$を、$\dfrac{\pi}{3}\lt \theta \lt \dfrac{\pi}{2}$と$\cos 3\theta=-\dfrac{11}{16}$を同時に満たすものとする。このとき、$\cos\theta$を求めよ。
(3)(2)の$\theta$に対して、定積分$\displaystyle \int_{0}^{\theta}sin^5x dx$を求めよ。
【高知大学 2023】
この動画を見る
(1)すべての実数xに対して
$\sin 3x=3\sin x-4\sin^3x$
$\cos 3x=-3\cos x+4\cos^3x$
が成り立つことを、加法定理と2倍角の公式を用いて示せ。
(2)実数$\theta$を、$\dfrac{\pi}{3}\lt \theta \lt \dfrac{\pi}{2}$と$\cos 3\theta=-\dfrac{11}{16}$を同時に満たすものとする。このとき、$\cos\theta$を求めよ。
(3)(2)の$\theta$に対して、定積分$\displaystyle \int_{0}^{\theta}sin^5x dx$を求めよ。
【高知大学 2023】
【高校数学】毎日積分65日目~47都道府県制覇への道~【⑨高知(高知大学)】【毎日17時投稿】
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#高知大学#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
(1)すべての実数$x$に対して
$sin3x=3sinx-4sin^3x$
$cos3x=-3cosx+4cos^3x$
が成り立つことを、加法定理と2倍角の公式を用いて示せ。
(2)実数$θ$を、$\displaystyle\frac{π}{3}<θ<\frac{π}{2}$と$cos3θ=\displaystyle-\frac{11}{16}$を同時に満たすものとする。このとき、$cosθ$を求めよ。
(3)(2)の$θ$に対して、定積分$\displaystyle\int_0^θsin^5xdx$を求めよ。
【高知大学 2023】
この動画を見る
(1)すべての実数$x$に対して
$sin3x=3sinx-4sin^3x$
$cos3x=-3cosx+4cos^3x$
が成り立つことを、加法定理と2倍角の公式を用いて示せ。
(2)実数$θ$を、$\displaystyle\frac{π}{3}<θ<\frac{π}{2}$と$cos3θ=\displaystyle-\frac{11}{16}$を同時に満たすものとする。このとき、$cosθ$を求めよ。
(3)(2)の$θ$に対して、定積分$\displaystyle\int_0^θsin^5xdx$を求めよ。
【高知大学 2023】
【22日目】毎日3分多義語:島田先生に抜き打ちテスト③【毎朝7時投稿】#英単語 #毎日3分多義語 #shorts
単元:
#英語(高校生)#会話文・イディオム・構文・英単語#英単語
指導講師:
理数個別チャンネル
問題文全文(内容文):
<今日の単語>
firm
gift
hot
出典:島田先生の記憶
この動画を見る
<今日の単語>
firm
gift
hot
出典:島田先生の記憶
【高校数学】毎日積分64日目~47都道府県制覇への道~【⑧福岡】【毎日17時投稿】
単元:
#積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
$xy$平面上の曲線$C$を、媒介変数tを用いて次のように定める。
$x=t+2\sin^{2t}, y=t+\sin t (0\lt t\lt \pi)$
以下の問いに答えよ。
(1)曲線$C$に接する直線のうち$y$軸と平行なものがいくつあるか求めよ。
(2)曲線$C$のうち$y≦x$の領域にある部分と直線$y=x$で囲まれた図形の面積を求めよ。
【九州大学 2023】
この動画を見る
$xy$平面上の曲線$C$を、媒介変数tを用いて次のように定める。
$x=t+2\sin^{2t}, y=t+\sin t (0\lt t\lt \pi)$
以下の問いに答えよ。
(1)曲線$C$に接する直線のうち$y$軸と平行なものがいくつあるか求めよ。
(2)曲線$C$のうち$y≦x$の領域にある部分と直線$y=x$で囲まれた図形の面積を求めよ。
【九州大学 2023】
【21日目】毎日3分多義語:島田先生に抜き打ちテスト②【毎朝7時投稿】#英単語 #毎日3分多義語 #shorts
単元:
#英語(高校生)#会話文・イディオム・構文・英単語#英単語
指導講師:
理数個別チャンネル
問題文全文(内容文):
<今日の単語>
capital
drop
fire
firm
出典:島田先生の記憶
この動画を見る
<今日の単語>
capital
drop
fire
firm
出典:島田先生の記憶
【高校数学】毎日積分63日目~47都道府県制覇への道~【⑦佐賀】【毎日17時投稿】
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#佐賀大学#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の問に答えよ。
(1)等式$(\tan\theta)’=\dfrac{1}{\cos^2\theta}$を示せ。また、定積分$\displaystyle \int_{0}^{\frac{\pi}{4}}\dfrac{1}{\cos^2\theta}d\theta$の値を求めよ。
(2)等式$\dfrac{\cos\theta}{1+\sin\theta}+\dfrac{\cosθ}{1-\sin\theta}=\dfrac{2}{\cos\theta}$を示せ。また、定積分$\displaystyle \int_{0}^{\frac{\pi}{6}}\dfrac{1}{\cos\theta}d\theta$の値を求めよ。
(3)定積分$\displaystyle \int_{0}^{\frac{\pi}{6}}\dfrac{1}{\cos^3\theta}d\theta$の値を求めよ。
【佐賀大学 2023】
この動画を見る
次の問に答えよ。
(1)等式$(\tan\theta)’=\dfrac{1}{\cos^2\theta}$を示せ。また、定積分$\displaystyle \int_{0}^{\frac{\pi}{4}}\dfrac{1}{\cos^2\theta}d\theta$の値を求めよ。
(2)等式$\dfrac{\cos\theta}{1+\sin\theta}+\dfrac{\cosθ}{1-\sin\theta}=\dfrac{2}{\cos\theta}$を示せ。また、定積分$\displaystyle \int_{0}^{\frac{\pi}{6}}\dfrac{1}{\cos\theta}d\theta$の値を求めよ。
(3)定積分$\displaystyle \int_{0}^{\frac{\pi}{6}}\dfrac{1}{\cos^3\theta}d\theta$の値を求めよ。
【佐賀大学 2023】
【20日目】毎日3分多義語:島田先生に抜き打ちテスト①【毎朝7時投稿】#英単語 #毎日3分多義語 #shorts
単元:
#英語(高校生)#会話文・イディオム・構文・英単語#英単語
指導講師:
理数個別チャンネル
問題文全文(内容文):
<今日の単語>
book
bow
bat
case
capital
出典:島田先生の記憶
この動画を見る
<今日の単語>
book
bow
bat
case
capital
出典:島田先生の記憶
故郷長崎の積分でまさかの大苦戦…!? #shorts #高校数学 #毎日積分
【高校数学】無理関数のグラフの裏ワザ!例題もあるよ!
単元:
#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の無理関数のグラフをかけ。
(1)$y=\sqrt{x+2}$
(2)$y=\sqrt{-3x-6}$
(3)$y=-\sqrt{7-4x}$
(4)$y=-\sqrt{\dfrac{1}{2}x-3}$
この動画を見る
次の無理関数のグラフをかけ。
(1)$y=\sqrt{x+2}$
(2)$y=\sqrt{-3x-6}$
(3)$y=-\sqrt{7-4x}$
(4)$y=-\sqrt{\dfrac{1}{2}x-3}$
【高校数学】無理関数のグラフの裏ワザ!例題もあるよ!
単元:
#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の無理関数のグラフをかけ。
(1)$ y=\sqrt{x+2}$
(2)$ y=\sqrt{ー3x-6}$
(3)$ y=-\sqrt{7-4x}$
(4)$ y=-\sqrt{\frac{1}{2}x-3}$
この動画を見る
次の無理関数のグラフをかけ。
(1)$ y=\sqrt{x+2}$
(2)$ y=\sqrt{ー3x-6}$
(3)$ y=-\sqrt{7-4x}$
(4)$ y=-\sqrt{\frac{1}{2}x-3}$
【高校数学】毎日積分62日目~47都道府県制覇への道~【⑥長崎】【毎日17時投稿】
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#長崎大学#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
$ a,b$を定数とする。すべての実数$x$で連続な関数$f(x)$について、等式
$\displaystyle\int_a^bf(x)dx = \displaystyle\int_a^bf(a+b-x)dx$
が成り立つことを証明せよ。また、定積分$\displaystyle\int_1^2\frac{x^2}{x^2+(3-x)^2}dx$を求めよ。
【長崎大学 2023】
この動画を見る
$ a,b$を定数とする。すべての実数$x$で連続な関数$f(x)$について、等式
$\displaystyle\int_a^bf(x)dx = \displaystyle\int_a^bf(a+b-x)dx$
が成り立つことを証明せよ。また、定積分$\displaystyle\int_1^2\frac{x^2}{x^2+(3-x)^2}dx$を求めよ。
【長崎大学 2023】
高校数学:数学検定準1級2次:問題6 3次方程式の解と係数の関係
単元:
#数Ⅱ#数学検定・数学甲子園・数学オリンピック等#複素数と方程式#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#数学検定#数学検定準1級#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の2つの3次方程式
$x^3+10x^2+ax+14=0$
$x^3+2x^2+bx-2=0$
はそれぞれ異なる3個の解をもちますが、そのうちの2個は共通な解です。このと き、定数$a,b$の値および共通な2個の解を求めなさい。
この動画を見る
次の2つの3次方程式
$x^3+10x^2+ax+14=0$
$x^3+2x^2+bx-2=0$
はそれぞれ異なる3個の解をもちますが、そのうちの2個は共通な解です。このと き、定数$a,b$の値および共通な2個の解を求めなさい。
毎日積分~47都道府県制覇への道~ #Shorts #高校数学 #積分
【高校数学】毎日積分61日目~47都道府県制覇への道~【⑤大分】【毎日17時投稿】
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#大分大学#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
曲線$C$を媒介変数$θ$を用いて
$\begin{equation}
\left\{ \,
\begin{aligned}
x=3cosθ \\
y=sin2θ
\end{aligned}
\right.
\end{equation}$
$(0≦θ≦π/2)$
と表す。
(1)曲線$C$上の点で、$y$座標の値が最大となる点の座標$(x,y)$を求めなさい。また、曲線$C$上の点で、$y$座標の値が最小となる点の座標$(x,y)$をすべて求めなさい。
(2)曲線$C$と$x$軸で囲まれた図形の面積$S$を求めなさい。
(3)曲線$C$と$x$軸で囲まれた図形を$x$軸のまわりに1回転してできる回転体の体積$V$を求めなさい。
【大分大学 2023】
この動画を見る
曲線$C$を媒介変数$θ$を用いて
$\begin{equation}
\left\{ \,
\begin{aligned}
x=3cosθ \\
y=sin2θ
\end{aligned}
\right.
\end{equation}$
$(0≦θ≦π/2)$
と表す。
(1)曲線$C$上の点で、$y$座標の値が最大となる点の座標$(x,y)$を求めなさい。また、曲線$C$上の点で、$y$座標の値が最小となる点の座標$(x,y)$をすべて求めなさい。
(2)曲線$C$と$x$軸で囲まれた図形の面積$S$を求めなさい。
(3)曲線$C$と$x$軸で囲まれた図形を$x$軸のまわりに1回転してできる回転体の体積$V$を求めなさい。
【大分大学 2023】
【前編】2024年1月実施の高2K塾模試【情報Ⅰ】の講評 ※後編は共通テスト「情報Ⅰ」専門チャンネルで公開
単元:
#情報Ⅰ(高校生)#模試解説・過去問解説
指導講師:
理数個別チャンネル
問題文全文(内容文):
2024年1月実施の高2全統模試【情報Ⅰ】の講評とそこから分かる勉強法について座談会しました。
■出演者
・ユースケ(情報初心者・司会)
・うっち~(元エンジニア)
・ぐっさん(基本情報技術者)
・NI・SHI・NO(情報初心者)
この動画を見る
2024年1月実施の高2全統模試【情報Ⅰ】の講評とそこから分かる勉強法について座談会しました。
■出演者
・ユースケ(情報初心者・司会)
・うっち~(元エンジニア)
・ぐっさん(基本情報技術者)
・NI・SHI・NO(情報初心者)
【前編】2023年度K塾共通テスト高2模試「情報Ⅰ」(2024年1月28日(日)実施) の講評 ※後編は共通テスト「情報Ⅰ」専門チャンネルで公開
単元:
#情報Ⅰ(高校生)#模試解説・過去問解説#【河合塾】全統共通テスト模試
指導講師:
理数個別チャンネル
問題文全文(内容文):
2023年度K塾共通テスト高2模試「情報Ⅰ」(2024年1月28日(日)実施) の講評をしていきます.
この動画を見る
2023年度K塾共通テスト高2模試「情報Ⅰ」(2024年1月28日(日)実施) の講評をしていきます.
高校数学:数学検定準1級1次:問題6,7 双曲線の焦点、関数の極限
単元:
#数学検定・数学甲子園・数学オリンピック等#平面上の曲線#関数と極限#2次曲線#関数の極限#数学検定#数学検定準1級#数学(高校生)#数C#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
xy平面上の双曲線
$\frac{x^2}{36}-\frac{y^2}{64}=-1$
の焦点の座標を求めなさい。
次の極限値を求めなさい。
$\displaystyle \lim_{ x \to 1 }\displaystyle \frac{x^2+2x-3}{\sqrt[ 3 ]{ x }-1}$
この動画を見る
xy平面上の双曲線
$\frac{x^2}{36}-\frac{y^2}{64}=-1$
の焦点の座標を求めなさい。
次の極限値を求めなさい。
$\displaystyle \lim_{ x \to 1 }\displaystyle \frac{x^2+2x-3}{\sqrt[ 3 ]{ x }-1}$
【高校数学】毎日積分60日目~47都道府県制覇への道~【④熊本】【毎日17時投稿】
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#熊本大学#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
定積分$\displaystyle \int_1^{\sqrt{t}}4tx(1-tx^2)e^{-tx^2}logxdx$の値を$t$を用いて表せ。
【熊本大学 2023】
この動画を見る
定積分$\displaystyle \int_1^{\sqrt{t}}4tx(1-tx^2)e^{-tx^2}logxdx$の値を$t$を用いて表せ。
【熊本大学 2023】
【数学】中高一貫校問題集 数学3 数式・関数編 111 実数解が存在することの証明
単元:
#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
教材:
#TK数学#TK数学問題集3(数式・関数編)#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
a,b,cは実数の定数で、a≠0とする。2次方程式ax²+bx+c=0が、次の各場合に必ず実数解をもつことを証明せよ。
(1)$b=\frac{a}{2}+2c$
(2)$a+c=0$
(3)aとcが異符号
この動画を見る
a,b,cは実数の定数で、a≠0とする。2次方程式ax²+bx+c=0が、次の各場合に必ず実数解をもつことを証明せよ。
(1)$b=\frac{a}{2}+2c$
(2)$a+c=0$
(3)aとcが異符号
【高校数学】毎日積分59日目~47都道府県制覇への道~【③宮崎】【毎日17時投稿】
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#宮崎大学#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
関数$\displaystyle f(x)=\frac{x}{1+x^2}$および座標平面上の原点$O$を通る曲線$C:y=f(x)$について、次の各問に答えよ。
(1)$f(x)$の導関数$f'(x)$および第2次導関数$f''(x)$を求めよ。
(2)直線$y=ax$が曲線$C$に$O$で接するときの定数$a$の値を求めよ。また、このとき、$x >0$において、$ax>f(x)$が成り立つことを示せ。
(3)関数$f(x)$の増減、極値、曲線$C$の凹凸、変曲点および漸近線を調べて、曲線$C$の概形をかけ。
(4)(2)で求めた$a$の値に対し、曲線$C$と直線$y=ax$および直線$x=\sqrt{3}$で囲まれた部分の面積$S$を求めよ。
【宮崎大学 2023】
この動画を見る
関数$\displaystyle f(x)=\frac{x}{1+x^2}$および座標平面上の原点$O$を通る曲線$C:y=f(x)$について、次の各問に答えよ。
(1)$f(x)$の導関数$f'(x)$および第2次導関数$f''(x)$を求めよ。
(2)直線$y=ax$が曲線$C$に$O$で接するときの定数$a$の値を求めよ。また、このとき、$x >0$において、$ax>f(x)$が成り立つことを示せ。
(3)関数$f(x)$の増減、極値、曲線$C$の凹凸、変曲点および漸近線を調べて、曲線$C$の概形をかけ。
(4)(2)で求めた$a$の値に対し、曲線$C$と直線$y=ax$および直線$x=\sqrt{3}$で囲まれた部分の面積$S$を求めよ。
【宮崎大学 2023】
【高校数学】分数関数と一次関数の不等式をグラフを使わない裏ワザ!②
単元:
#関数と極限#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の不等式を解け。
$\displaystyle\frac{2x}{x+1}≧x+6$
この動画を見る
次の不等式を解け。
$\displaystyle\frac{2x}{x+1}≧x+6$